toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Gregorio, E.; Staelens, M.; Hosseinkhah, N.; Karimpoor, M.; Liburd, J.; Lim, L.; Shankar, K.; Tuszynski, J.A. url  doi
openurl 
  Title Raman Spectroscopy Reveals Photobiomodulation-Induced α-Helix to β-Sheet Transition in Tubulins: Potential Implications for Alzheimer's and Other Neurodegenerative Diseases Type Journal Article
  Year 2024 Publication Nanomaterials Abbreviated Journal (down) Nanomaterials  
  Volume 14 Issue 13 Pages 1093 - 21pp  
  Keywords proteins; protein dynamics; protein structure; non-invasive therapies; low-level laser therapy; spectroscopy; amide bands; amide I; spectral decomposition  
  Abstract In small clinical studies, the application of transcranial photobiomodulation (PBM), which typically delivers low-intensity near-infrared (NIR) to treat the brain, has led to some remarkable results in the treatment of dementia and several neurodegenerative diseases. However, despite the extensive literature detailing the mechanisms of action underlying PBM outcomes, the specific mechanisms affecting neurodegenerative diseases are not entirely clear. While large clinical trials are warranted to validate these findings, evidence of the mechanisms can explain and thus provide credible support for PBM as a potential treatment for these diseases. Tubulin and its polymerized state of microtubules have been known to play important roles in the pathology of Alzheimer's and other neurodegenerative diseases. Thus, we investigated the effects of PBM on these cellular structures in the quest for insights into the underlying therapeutic mechanisms. In this study, we employed a Raman spectroscopic analysis of the amide I band of polymerized samples of tubulin exposed to pulsed low-intensity NIR radiation (810 nm, 10 Hz, 22.5 J/cm2 dose). Peaks in the Raman fingerprint region (300-1900 cm-1)-in particular, in the amide I band (1600-1700 cm-1)-were used to quantify the percentage of protein secondary structures. Under this band, hidden signals of C=O stretching, belonging to different structures, are superimposed, producing a complex signal as a result. An accurate decomposition of the amide I band is therefore required for the reliable analysis of the conformation of proteins, which we achieved through a straightforward method employing a Voigt profile. This approach was validated through secondary structure analyses of unexposed control samples, for which comparisons with other values available in the literature could be conducted. Subsequently, using this validated method, we present novel findings of statistically significant alterations in the secondary structures of polymerized NIR-exposed tubulin, characterized by a notable decrease in alpha-helix content and a concurrent increase in beta-sheets compared to the control samples. This PBM-induced alpha-helix to beta-sheet transition connects to reduced microtubule stability and the introduction of dynamism to allow for the remodeling and, consequently, refreshing of microtubule structures. This newly discovered mechanism could have implications for reducing the risks associated with brain aging, including neurodegenerative diseases like Alzheimer's disease, through the introduction of an intervention following this transition.  
  Address [Di Gregorio, Elisabetta; Staelens, Michael; Tuszynski, Jack A.] Univ Alberta, Fac Sci, Dept Phys, Edmonton, AB T6G 2E1, Canada, Email: michael.staelens@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001269841000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6204  
Permanent link to this record
 

 
Author Zamiralov, V.S.; Ozpineci, A.; Erkol, G. doi  openurl
  Title QCD sum rules for the coupling constants of vector mesons to octet baryons Type Journal Article
  Year 2013 Publication Moscow University Physics Bulletin Abbreviated Journal (down) Mosc. Univ. Phys. Bull.  
  Volume 68 Issue 3 Pages 205-209  
  Keywords quantum chromodynamics; sum rules; baryons; vector mesons; Borel interval  
  Abstract The QCD sum rules on the light cone proposed by Wang for the coupling constants of the rho meson are generalized to the vector mesons omega and phi and all octet baryons, the I >-hyperon included. A comparison with other results is given.  
  Address [Zamiralov, V. S.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia, Email: zamir@depni.sinp.msu.ru  
  Corporate Author Thesis  
  Publisher Allerton Press Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-1349 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322139000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1517  
Permanent link to this record
 

 
Author Reid, B.A. et al; de Putter, R. url  doi
openurl 
  Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal (down) Mon. Not. Roy. Astron. Soc.  
  Volume 426 Issue 4 Pages 2719-2737  
  Keywords galaxies: haloes; galaxies: statistics; cosmological parameters; large-scale structure of Universe  
  Abstract We analyse the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264-283 galaxies in the redshift range 0.43 < z < 0.7 spanning 3275 deg(2). Both peculiar velocities and errors in the assumed redshiftdistance relation (AlcockPaczynski effect) generate correlations between clustering amplitude and orientation with respect to the line of sight. Together with the sharp baryon acoustic oscillation (BAO) standard ruler, our measurements of the broad-band shape of the monopole and quadrupole correlation functions simultaneously constrain the comoving angular diameter distance (2190 +/- 61 Mpc) to z = 0.57, the Hubble expansion rate at z = 0.57 (92.4 +/- 4.5 km s(-1) Mpc(-1)) and the growth rate of structure at that same redshift (d(sigma 8)/d ln a = 0.43 +/- 0.069). Our analysis provides the best current direct determination of both DA and H in galaxy clustering data using this technique. If we further assume a cold dark matter expansion history, our growth constraint tightens to d(sigma 8)/d ln a = 0.415 +/- 0.034. In combination with the cosmic microwave background, our measurements of D-A,H and d(sigma 8)/d ln a all separately require dark energy at z > 0.57, and when combined imply Omega(A) = 0.74 +/- 0.016, independent of the Universe's evolution at z < 0.57. All of these constraints assume scale-independent linear growth, and assume general relativity to compute both O(10 per cent) non-linear model corrections and our errors. In our companion paper, Samushia et al., we explore further cosmological implications of these observations.  
  Address [Reid, Beth A.; White, Martin; Bailey, Stephen; Roe, N. A.; Ross, Nicholas P.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: beth.ann.reid@gmail.com  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310064400008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1192  
Permanent link to this record
 

 
Author Anderson, L. et al; de Putter, R.; Mena, O. url  doi
openurl 
  Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal (down) Mon. Not. Roy. Astron. Soc.  
  Volume 427 Issue 4 Pages 3435-3467  
  Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large-scale structure of Universe  
  Abstract We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264 283 massive galaxies covering 3275 square degrees with an effective redshift z = 0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance Lambda CDM cosmological model, this sample covers an effective volume of 2.2 Gpc(3), and represents the largest sample of the Universe ever surveyed at this density, (n) over bar approximate to 3 x 10(-4) h(-3) Mpc(3). We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5 sigma in both the correlation function and power spectrum. Combining with the SDSS-II luminous red galaxy sample, the detection significance increases to 6.7 sigma. Fitting for the position of the acoustic features measures the distance to z = 0.57 relative to the sound horizon D-V/r(s) = 13.67 +/ 0.22 at z = 0.57. Assuming a fiducial sound horizon of 153.19 Mpc, which matches cosmic microwave background constraints, this corresponds to a distance D-V (z = 0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most precise distance constraint ever obtained from a galaxy survey. We place this result alongside previous BAO measurements in a cosmological distance ladder and find excellent agreement with the current supernova measurements. We use these distance measurements to constrain various cosmological models, finding continuing support for a flat Universe with a cosmological constant.  
  Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: nikhil.padmanabhan@yale.edu;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314421000014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1319  
Permanent link to this record
 

 
Author Anderson, L. et al; Mena, O. url  doi
openurl 
  Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring D-A and H at z=0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample Type Journal Article
  Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal (down) Mon. Not. Roy. Astron. Soc.  
  Volume 439 Issue 1 Pages 83-101  
  Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large scale structure of Universe  
  Abstract We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find D-A(0.57) = 1408 +/- 45 Mpc and H(0.57) = 92.9 +/- 7.8 km s(-1) Mpc(-1) for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.  
  Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: djschlegel@lbl.gov  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333297700026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1738  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva