|   | 
Details
   web
Records
Author Andreev, Y.M. et al; Molina Bueno, L.; Tuzi, M.
Title Measurement of the intrinsic hadronic contamination in the NA64-e high-purity e+/e- beam at CERN Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (down) Nucl. Instrum. Methods Phys. Res. A
Volume 1057 Issue Pages 168776 - 8pp
Keywords Light dark matter; Missing-energy experiment; H4 beamline; Hadron contamination
Abstract We present the measurement of the intrinsic hadronic contamination at the CERN SPS H4 beamline configured to transport electrons and positrons at 100 GeV/c. The analysis, performed using data collected by the NA64-e experiment in 2022, is based on calorimetric measurements, exploiting the different interaction mechanisms of electrons and hadrons in the NA64 detector. We determined the contamination by comparing the results obtained using the nominal electron/positron beamline configuration with those from a dedicated setup, in which only hadrons impinged on the detector. We also obtained an estimate of the relative protons, antiprotons and pions yield by exploiting the different absorption probabilities of these particles in matter. We cross-checked our results with a dedicated Monte Carlo simulation for the hadron production at the primary T2 target, finding a good agreement with the experimental measurements.
Address [Andreev, Yu. M.; Chumakov, A. G.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T.; Frolov, V. N.; Gerassimov, S. G.; Gninenko, S. N.; Kachanov, V. A.; Kambar, Y.; Karneyeu, A. E.; Kirsanov, M. M.; Kolosov, V. N.; Gertsenberger, S. V.; Kasianova, E. A.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Mikhailov, Yu. V.; Bueno, L. Molina; Peshekhonov, D. V.; Polyakov, V. A.; Salamatin, K.; Samoylenko, V. D.; Shchukin, D.; Tikhomirov, V. O.; Tlisova, I.; Toropin, A. N.; Trifonov, A. Yu.; Vasilishin, B. I.; Volkov, P. V.; Volkov, V. Yu.; Voronchikhin, I. V.; Zhevlakov, A. S.] CERN, Geneva, Switzerland, Email: pietro.bisio@ge.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001154863600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5923
Permanent link to this record
 

 
Author Bach, E. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the quality assurance results from the initial part of production of the ATLAS18 ITK strip sensors Type Journal Article
Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (down) Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169435 - 8pp
Keywords Silicon strip sensors; Parameter analysis
Abstract The production of strip sensors for the ATLAS Inner Tracker (ITk) started in 2021. Since then, a Quality Assurance (QA) program has been carried out continuously, by using specific test structures, in parallel to the Quality Control (QC) inspection of the sensors. The QA program consists of monitoring sensor-specific characteristics and the technological process variability, before and after the irradiation with gammas, neutrons, and protons. After two years, half of the full production volume has been reached and we present an analysis of the parameters measured as part of the QA process. The main devices used for QA purposes are miniature strip sensors, monitor diodes, and the ATLAS test chip, which contains several test structures. Such devices are tested by several sites across the collaboration depending on the type of samples (non-irradiated components or irradiated with protons, neutrons, or gammas). The parameters extracted from the tests are then uploaded to a database and analyzed by Python scripts. These parameters are mainly examined through histograms and timeevolution plots to obtain parameter distributions, production trends, and meaningful parameter-to-parameter correlations. The purpose of this analysis is to identify possible deviations in the fabrication or the sensor quality, changes in the behavior of the test equipment at different test sites, or possible variability in the irradiation processes. The conclusions extracted from the QA program have allowed test optimization, establishment of control limits for the parameters, and a better understanding of device properties and fabrication trends. In addition, any abnormal results prompt immediate feedback to a vendor.
Address [Bach, E.; Bhardwaj, A.; Crick, B.; Ullan, M.] CSIC, Inst Microelect Barcelona IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: eric.bach@imb-cnm.csic.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001252172700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6163
Permanent link to this record
 

 
Author Romero-Barrientos, J.; Marquez Damian, J.I.; Molina, F.; Zambra, M.; Aguilera, P.; Lopez-Usquiano, F.; Parra, B.; Ruiz, A.
Title Calculation of kinetic parameters beta eff and L with modified open source Monte Carlo code OpenMC(TD) Type Journal Article
Year 2022 Publication Nuclear Engineering and Technology Abbreviated Journal (down) Nucl. Eng. Technol.
Volume 54 Issue 3 Pages 811-816
Keywords OpenMC; Monte Carlo; Kinetic parameters; Open source; Neutron generation time; Effective delayed neutron fraction
Abstract This work presents the methodology used to expand the capabilities of the Monte Carlo code OpenMC for the calculation of reactor kinetic parameters: effective delayed neutron fraction beff and neutron generation time L. The modified code, OpenMC(Time-Dependent) or OpenMC(TD), was then used to calculate the effective delayed neutron fraction by using the prompt method, while the neutron generation time was estimated using the pulsed method, fitting L to the decay of the neutron population. OpenMC(TD) is intended to serve as an alternative for the estimation of kinetic parameters when licensed codes are not available. The results obtained are compared to experimental data and MCNP calculated values for 18 benchmark configurations.
Address [Romero-Barrientos, J.; Molina, F.; Zambra, M.; Aguilera, P.; Lopez-Usquiano, F.; Ruiz, A.] Comis Chilena Energia Nucl, Santiago 12501, Chile, Email: romeroj@uchile.cl
Corporate Author Thesis
Publisher Korean Nuclear Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes WOS:000766649800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5172
Permanent link to this record
 

 
Author Hinarejos, M.; Bañuls, M.C.; Perez, A.
Title Wigner formalism for a particle on an infinite lattice: dynamics and spin Type Journal Article
Year 2015 Publication New Journal of Physics Abbreviated Journal (down) New J. Phys.
Volume 17 Issue Pages 013037 - 16pp
Keywords Wigner functions; dynamics on a lattice; spin-dependent forces
Abstract The recently proposed Wigner function for a particle in an infinite lattice (Hinarejos M, Banuls MC and Perez A 2012 New J. Phys. 14 103009) is extended here to include an internal degree of freedom as spin. This extension is made by introducing a Wigner matrix. The formalism is developed to account for dynamical processes, with or without decoherence. We show explicit solutions for the case of Hamiltonian evolution under a position-dependent potential, and for evolution governed by a master equation under some simple models of decoherence, for which the Wigner matrix formalism is well suited. Discrete processes are also discussed. Finally, we discuss the possibility of introducing a negativity concept for the Wigner function in the case where the spin degree of freedom is included.
Address [Hinarejos, M.; Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: banulsm@mpq.mpg.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000348759800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2101
Permanent link to this record
 

 
Author Zhao, X.; McLain, M.A.; Vijande, J.; Ferrando, A.; Carr, L.D.; Garcia-March, M.A.
Title Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap Type Journal Article
Year 2019 Publication New Journal of Physics Abbreviated Journal (down) New J. Phys.
Volume 21 Issue Pages 043042 - 13pp
Keywords partial symmetry breaking; ultracold boson; ring trap; nonequilibrium quantum dynamics
Abstract A vortex in a Bose-Einstein condensate on a ring undergoes quantum dynamics in response to a quantum quench in terms of partial symmetry breaking from a uniform lattice to a biperiodic one. Neither the current, a macroscopic measure, nor fidelity, a microscopic measure, exhibit critical behavior. Instead, the symmetry memory succeeds in identifying the critical symmetry breaking at which the system begins to forget its initial symmetry state. We further identify a symmetry energy difference in the low lying excited states which trends with the symmetry memory.
Address [Zhao, Xinxin] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China, Email: zhaoxinxin@pku.edu.cn;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000465987600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3995
Permanent link to this record