|   | 
Details
   web
Records
Author Fernandez Casani, A.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Salt, J.; Sanchez, J.; Villaplana Perez, M.
Title Big Data Analytics for the ATLAS EventIndex Project with Apache Spark Type Journal Article
Year 2023 Publication Computational and Mathematical Methods Abbreviated Journal (up) Comput. Math. Methods
Volume 2023 Issue Pages 6900908 - 19pp
Keywords
Abstract The ATLAS EventIndex was designed to provide a global event catalogue and limited event-level metadata for ATLAS experiment of the Large Hadron Collider (LHC) and their analysis groups and users during Run 2 (2015-2018) and has been running in production since. The LHC Run 3, started in 2022, has seen increased data-taking and simulation production rates, with which the current infrastructure would still cope but may be stretched to its limits by the end of Run 3. A new core storage service is being developed in HBase/Phoenix, and there is work in progress to provide at least the same functionality as the current one for increased data ingestion and search rates and with increasing volumes of stored data. In addition, new tools are being developed for solving the needed access cases within the new storage. This paper describes a new tool using Spark and implemented in Scala for accessing the big data quantities of the EventIndex project stored in HBase/Phoenix. With this tool, we can offer data discovery capabilities at different granularities, providing Spark Dataframes that can be used or refined within the same framework. Data analytic cases of the EventIndex project are implemented, like the search for duplicates of events from the same or different datasets. An algorithm and implementation for the calculation of overlap matrices of events across different datasets are presented. Our approach can be used by other higher-level tools and users, to ease access to the data in a performant and standard way using Spark abstractions. The provided tools decouple data access from the actual data schema, which makes it convenient to hide complexity and possible changes on the backed storage.
Address [Casani, Alvaro Fernandez; Montoro, Carlos Garcia; de la Hoz, Santiago Gonzalez; Salt, Jose; Sanchez, Javier; Perez, Miguel Villaplana] CSIC UV, Inst Corpuscular Phys IFIC, E-46980 Paterna, Spain, Email: alvaro.fernandez@ific.uv.es;
Corporate Author Thesis
Publisher Wiley-Hindawi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001079548500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5706
Permanent link to this record
 

 
Author Ferrer-Sanchez, A.; Martin-Guerrero, J.; Ruiz de Austri, R.; Torres-Forne, A.; Font, J.A.
Title Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics Type Journal Article
Year 2024 Publication Computer Methods in Applied Mechanics and Engineering Abbreviated Journal (up) Comput. Meth. Appl. Mech. Eng.
Volume 424 Issue Pages 116906 - 18pp
Keywords Riemann problem; Euler equations; Machine learning; Neural networks; Relativistic hydrodynamics
Abstract We present a novel methodology based on Physics-Informed Neural Networks (PINNs) for solving systems of partial differential equations admitting discontinuous solutions. Our method, called Gradient-Annihilated PINNs (GA-PINNs), introduces a modified loss function that forces the model to partially ignore high-gradients in the physical variables, achieved by introducing a suitable weighting function. The method relies on a set of hyperparameters that control how gradients are treated in the physical loss. The performance of our methodology is demonstrated by solving Riemann problems in special relativistic hydrodynamics, extending earlier studies with PINNs in the context of the classical Euler equations. The solutions obtained with the GA-PINN model correctly describe the propagation speeds of discontinuities and sharply capture the associated jumps. We use the relative l(2) error to compare our results with the exact solution of special relativistic Riemann problems, used as the reference ''ground truth'', and with the corresponding error obtained with a second-order, central, shock-capturing scheme. In all problems investigated, the accuracy reached by the GA-PINN model is comparable to that obtained with a shock-capturing scheme, achieving a performance superior to that of the baseline PINN algorithm in general. An additional benefit worth stressing is that our PINN-based approach sidesteps the costly recovery of the primitive variables from the state vector of conserved variables, a well-known drawback of grid-based solutions of the relativistic hydrodynamics equations. Due to its inherent generality and its ability to handle steep gradients, the GA-PINN methodology discussed in this paper could be a valuable tool to model relativistic flows in astrophysics and particle physics, characterized by the prevalence of discontinuous solutions.
Address [Ferrer-Sanchez, Antonio; Martin-Guerrero, JoseD.] ETSE UV, Elect Engn Dept, IDAL, Avgda Univ S-N, Valencia 46100, Spain, Email: Antonio.Ferrer-Sanchez@uv.es
Corporate Author Thesis
Publisher Elsevier Science Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-7825 ISBN Medium
Area Expedition Conference
Notes WOS:001221797400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6126
Permanent link to this record
 

 
Author Allanach, B.C.; Martin, S.P.; Robertson, D.G.; Ruiz de Austri, R.
Title The inclusion of two-loop SUSYQCD corrections to gluino and squark pole masses in the minimal and next-to-minimal supersymmetric standard model: SOFTSUSY3.7 Type Journal Article
Year 2017 Publication Computer Physics Communications Abbreviated Journal (up) Comput. Phys. Commun.
Volume 219 Issue Pages 339-345
Keywords Gluino; Squark; MSSM; NMSSM
Abstract We describe an extension of the SOFTSUSY spectrum calculator to include two-loop supersymmetric QCD (SUSYQCD) corrections of order O(alpha(2)(s)) to gluino and squark pole masses, either in the minimal supersymmetric standard model (MSSM) or the next-to-minimal supersymmetric standard model (NMSSM). This document provides an overview of the program and acts as a manual for the new version of SOFTSUSY, which includes the increase in accuracy in squark and gluino pole mass predictions. Program summary Program title: SOFTSUSY Program Files doi: http://dx.doLorg/10.17632/sh77x9j7hs.1 Licensing provisions: GNU GPLv3 Programming language: C++, fortran, C Nature of problem: Calculating supersymmetric particle spectrum, mixing parameters and couplings in the MSSM or the NMSSM. The solution to the renormalization group equations must be consistent with theoretical boundary conditions on supersymmetry breaking parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested fixed point iteration. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CP-conserving). If the parameter point under investigation is nonphysical for some reason (for example because the electroWeak potential does not have an acceptable minimum), SOFTSUSY returns an error message. The higher order corrections included are for the MSSM (R-parity conserving or violating) or the real R-parity conserving NMSSM only. Journal reference of previous version: Comput. Phys. Comm. 189 (2015) 192. Does the new version supersede the previous version?: Yes. Reasons for the new version: It is desirable to improve the accuracy of the squark and gluinos mass predictions, since they strongly affect supersymmetric particle production cross-sections at colliders. Summary of revisions: The calculation of the squark and gluino pole masses is extended to be of next-to next-to leading order in SUSYQCD, i.e. including terms up to O(g(s)(4)/(16 pi(2))(2)). Additional comments: Program obtainable from http://softsusy.hepforge.org/
Address [Allanach, B. C.] Univ Cambridge, DAMTP, CMS, Wilberforce Rd, Cambridge CB3 0WA, England, Email: rruiz@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000407984100030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3258
Permanent link to this record
 

 
Author Aebischer, J.; Brivio, I.; Celis, A.; Evans, J.A.; Jiang, Y.; Kumar, J.; Pan, X.Y.; Porod, W.; Rosiek, J.; Shih, D.; Staub, F.; Straub, D.M.; van Dyk, D.; Vicente, A.
Title WCxf : An exchange format for Wilson coefficients beyond the Standard Model Type Journal Article
Year 2018 Publication Computer Physics Communications Abbreviated Journal (up) Comput. Phys. Commun.
Volume 232 Issue Pages 71-83
Keywords High energy physics and computing; Models beyond the standard model
Abstract We define a data exchange format for numerical values of Wilson coefficients of local operators parameterising low-energy effects of physics beyond the Standard Model. The format facilitates interfacing model-specific Wilson coefficient calculators, renormalisation group (RG) runners, and observable calculators. It is designed to be unambiguous (defining a non-redundant set of operators with fixed normalisation in each basis), extensible (allowing the addition of new EFTs or bases by the user), and robust (being based on industry standard file formats with parsers implemented in many programming languages). We have implemented the format for the Standard Model EFT (SMEFT) and for the weak effective theory (WET) below the electroweak scale and have added interfaces to a number of public codes dealing with SMEFT or WET. We also provide command-line utilities and a Python module for convenient manipulation of WCxf files, including translation between different bases and matching from SMEFT to WET. (C) 2018 Elsevier B.V. All rights reserved.
Address [Aebischer, Jason; Pan, Xuanyou; Straub, David M.] TUM, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany, Email: david.straub@tum.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000442190200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3695
Permanent link to this record
 

 
Author Consiglio, R.; de Salas, P.F.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.
Title PArthENoPE reloaded Type Journal Article
Year 2018 Publication Computer Physics Communications Abbreviated Journal (up) Comput. Phys. Commun.
Volume 233 Issue Pages 237-242
Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics
Abstract We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE2.0, is publicly available and distributed from the code site, http://parthenope.na.infn.it . Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implementation of running for grids of input parameters. New Version program summary Program Title: PArthENoPE2.0 Program Files doi : http://dx.doi.org/10.17632/wvgr7d8yt9.1 Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Supplementary material: User Manual available on the web page http://parthenope.na.infn.it Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 956 971 Does the new version supersede the previous version?: Yes Reasons for the new version: Make the code more versatile and user friendly Summary of revisions: (1) Publicly available libraries (2) GUI for configuration Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems
Address [Consiglio, R.; Miele, G.; Pisanti, O.] Univ Napoli Federico II, Dipartimento Fis E Pancini, Via Cintia, I-80126 Naples, Italy, Email: pisanti@na.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000444667100020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3729
Permanent link to this record