toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hajjar, R.; Palomares-Ruiz, S.; Mena, O. url  doi
openurl 
  Title Shedding light on the Δm21^2 tension with supernova neutrinos Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal (up) Phys. Lett. B  
  Volume 854 Issue Pages 138719 - 8pp  
  Keywords  
  Abstract One long-standing tension in the determination of neutrino parameters is the mismatched value of the solar mass square difference, Delta m(21)(2), measured by different experiments: the reactor antineutrino experiment KamLAND finds a best fit larger than the one obtained with solar neutrino data. Even if the current tension is mild (similar to 1.5 sigma.), it is timely to explore if independent measurements could help in either closing or reassessing this issue. In this regard, we explore how a future supernova burst in our galaxy could be used to determine Delta m(21)(2) at the future Hyper-Kamiokande detector, and how this could contribute to the current situation. We study Earth matter effects for different models of supernova neutrino spectra and supernova orientations. We find that, if supernova neutrino data prefers the KamLAND best fit for Delta m(21)(2), an uncertainty similar to the current KamLAND one could be achieved. On the contrary, if it prefers the solar neutrino data best fit, the current tension with KamLAND results could grow to a significance larger than 5 sigma. Furthermore, supernova neutrinos could significantly contribute to reducing the uncertainty on sin (2)theta(12).  
  Address [Hajjar, Rasmi; Palomares-Ruiz, Sergio; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Parc Cientif UV, C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: rasmi.hajjar@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001246913500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6159  
Permanent link to this record
 

 
Author Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Dendooven, P.; Garcia Lopez, J.G.; Hueso-Gonzalez, F.; Jiméeez-Ramos, M.C.; Perez-Curbelo, J.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G. doi  openurl
  Title Gamma-ray sources imaging and test-beam results with MACACO III Compton camera Type Journal Article
  Year 2024 Publication Physica Medica Abbreviated Journal (up) Phys. Medica  
  Volume 117 Issue Pages 103199 - 10pp  
  Keywords Hadron therapy; Compton camera; Scintillator crystals; Silicon photomultipliers  
  Abstract Hadron therapy is a radiotherapy modality which offers a precise energy deposition to the tumors and a dose reduction to healthy tissue as compared to conventional methods. However, methods for real-time monitoring are required to ensure that the radiation dose is deposited on the target. The IRIS group of IFIC-Valencia developed a Compton camera prototype for this purpose, intending to image the Prompt Gammas emitted by the tissue during irradiation. The system detectors are composed of Lanthanum (III) bromide scintillator crystals coupled to silicon photomultipliers. After an initial characterization in the laboratory, in order to assess the system capabilities for future experiments in proton therapy centers, different tests were carried out in two facilities: PARTREC (Groningen, The Netherlands) and the CNA cyclotron (Sevilla, Spain). Characterization studies performed at PARTREC indicated that the detectors linearity was improved with respect to the previous version and an energy resolution of 5.2 % FWHM at 511 keV was achieved. Moreover, the imaging capabilities of the system were evaluated with a line source of 68Ge and a point-like source of 241Am-9Be. Images at 4.439 MeV were obtained from irradiation of a graphite target with an 18 MeV proton beam at CNA, to perform a study of the system potential to detect shifts at different intensities. In this sense, the system was able to distinguish 1 mm variations in the target position at different beam current intensities for measurement times of 1800 and 600 s.  
  Address [Barrientos, L.; Borja-Lloret, M.; Casana, J. V.; Hueso-Gonzalez, F.; Perez-Curbelo, J.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Luis.Barrientos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1120-1797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001145147400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5892  
Permanent link to this record
 

 
Author Baran, J. et al; Brzezinski, K. url  doi
openurl 
  Title Feasibility of the J-PET to monitor the range of therapeutic proton beams Type Journal Article
  Year 2024 Publication Physica Medica Abbreviated Journal (up) Phys. Medica  
  Volume 118 Issue Pages 103301 - 9pp  
  Keywords PET; Range monitoring; J-PET; Monte Carlo simulations; Proton radiotherapy  
  Abstract Purpose: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J -PET) scanner for intra-treatment proton beam range monitoring. Methods: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J -PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread -Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J -PET scanner prototype dedicated to the proton beam range assessment. Results: The investigations indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple -layer dual -head geometry. The results indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for the clinical application, Conclusions: We performed simulation studies demonstrating that the feasibility of the J -PET detector for PET -based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre -clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double -layer cylindrical and triple -layer dual -head J -PET geometry configurations seem promising for future clinical application.  
  Address [Baran, Jakub; Silarski, Michal; Chug, Neha; Coussat, Aurelien; Czerwinski, Eryk; Dadgar, Meysam; Dulski, Kamil; Eliyan, Kavya, V; Gajos, Aleksander; Kacprzak, Krzysztof; Kaplon, Lukasz; Korcyl, Grzegorz; Kozik, Tomasz; Kumar, Deepak; Niedzwiecki, Szymon; Panek, Dominik; Parzych, Szymon; del Rio, Elena Perez; Simbarashe, Moyo; Sharma, Sushil; Shivani; Skurzok, Magdalena; Stepien, Ewa L.; Tayefi, Keyvan; Tayefi, Faranak; Moskal, Pawel] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, 11 Lojasiewicza St, PL-30348 Krakow, Poland, Email: jakubbaran92@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Sci Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1120-1797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001178648400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5990  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J. url  doi
openurl 
  Title Production of η and η' mesons in pp and pPb collisions Type Journal Article
  Year 2024 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 109 Issue 2 Pages 024907 - 20pp  
  Keywords  
  Abstract The production of eta and eta' mesons is studied in proton -proton and proton -lead collisions collected with the LHCb detector. Proton -proton collisions are studied at center -of -mass energies of 5.02 and 13 TeV and proton -lead collisions are studied at a center -of -mass energy per nucleon of 8.16 TeV. The studies are performed in center -of -mass (c.m.) rapidity regions 2.5 < y(c.m.) < 3.5 (forward rapidity) and -4.0 < y(c.m.) < -3.0 (backward rapidity) defined relative to the proton beam direction. The eta and eta' production cross sections are measured differentially as a function of transverse momentum for 1.5 < p(T) < 10 GeV and 3 < p(T) < 10 GeV, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for eta and eta' mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of eta mesons are also used to calculate eta/pi 0 cross-section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass -dependent nuclear effects in heavy -ion collisions, as well as eta and eta' meson fragmentation.  
  Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: seophine.stanislaus@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001183159900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6062  
Permanent link to this record
 

 
Author Krupczak, R.; da Silva, T.N.; Domingues, T.S.; Luzum, M.; Denicol, G.S.; Gardim, F.G.; Giannini, A.V.; Ferreira, M.N.; Hippert, M.; Noronha, J.; Chinellato, D.D.; Takahashi, J. url  doi
openurl 
  Title Causality violations in simulations of large and small heavy-ion collisions Type Journal Article
  Year 2024 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 109 Issue 3 Pages 034908 - 12pp  
  Keywords  
  Abstract Heavy-ion collisions, such as Pb-Pb or p-Pb, produce extreme conditions in temperature and density that make the hadronic matter transition to a new state, called quark-gluon plasma (QGP). Simulations of heavy-ion collisions provide a way to improve our understanding of the QGP's properties. These simulations are composed of a hybrid description that results in final observables in agreement with accelerators like LHC and RHIC. However, recent works pointed out that these hydrodynamic simulations can display acausal behavior during the evolution in certain regions, indicating a deviation from a faithful representation of the underlying QCD dynamics. To pursue a better understanding of this problem and its consequences, this work simulated two different collision systems, Pb-Pb and p-Pb at root sNN = 5.02 TeV. In this context, our results show that causality violation, even though always present, typically occurs on a small part of the system, quantified by the total energy fraction residing in the acausal region. In addition, the acausal behavior can be reduced with changes in the prehydrodynamic factors and the definition of the bulk-viscous relaxation time. Since these aspects are fairly arbitrary in current simulation models, without solid guidance from the underlying theory, it is reasonable to use the disturbing presence of acausal behavior in current simulations to guide improvements towards more realistic modeling. While this work does not solve the acausality problem, it sheds more light on this issue and also proposes a way to solve this problem in simulations of heavy-ion collisions.  
  Address [Krupczak, Renata; da Silva, Tiago Nunes] Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Dept Fis, Campus Univ Reitor Joao David Ferreira Lima, BR-88040900 Florianopolis, Brazil, Email: rkrupczak@physik.uni-bielefeld.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001198699800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6113  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva