|   | 
Details
   web
Records
Author Oliver, S.; Rodriguez Bosca, S.; Gimenez-Alventosa, V.
Title Enabling particle transport on CAD-based geometries for radiation simulations with penRed Type Journal Article
Year 2024 Publication Computer Physics Communications Abbreviated Journal (up) Comput. Phys. Commun.
Volume 298 Issue Pages 109091 - 11pp
Keywords Radiation transport; PENELOPE physics; Monte Carlo simulation; PenRed; CAD; Triangular surface mesh
Abstract Geometry construction is a fundamental aspect of any radiation transport simulation, regardless of the Monte Carlo code being used. Typically, this process is tedious, time-consuming, and error-prone. The conventional approach involves defining geometries using mathematical objects or surfaces. However, this method comes with several limitations, especially when dealing with complex models, particularly those with organic shapes. Furthermore, since each code employs its own format and methodology for defining geometries, sharing and reproducing simulations among researchers becomes a challenging task. Consequently, many codes have implemented support for simulating over geometries constructed via Computer-Aided Design (CAD) tools. Unfortunately, this feature is lacking in penRed and other PENELOPE physics-based codes. Therefore, the objective of this work is to implement such support within the penRed framework. New version program summary Program Title: Parallel Engine for Radiation Energy Deposition (penRed) CPC Library link to program files: https://doi.org/10.17632/rkw6tvtngy.2 Developer's repository link: https://github.com/PenRed/PenRed Code Ocean capsule: https://codeocean.com/capsule/1041417/tree Licensing provisions: GNU Affero General Public License v3 Programming language: C++ standard 2011. Journal reference of previous version: V. Gimenez-Alventosa, V. Gimenez Gomez, S. Oliver, PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE, Computer Physics Communications 267 (2021) 108065. doi:https://doi.org/10.1016/j.cpc.2021.108065. Does the new version supersede the previous version?: Yes Reasons for the new version: Implements the capability to simulate on CAD constructed geometries, among many other features and fixes. Summary of revisions: All changes applied through the code versions are summarized in the file CHANGELOG.md in the repository package. Nature of problem: While Monte Carlo codes have proven valuable in simulating complex radiation scenarios, they rely heavily on accurate geometrical representations. In the same way as many other Monte Carlo codes, penRed employs simple geometric quadric surfaces like planes, spheres and cylinders to define geometries. However, since these geometric models offer a certain level of flexibility, these representations have limitations when it comes to simulating highly intricate and irregular shapes. Anatomic structures, for example, require detailed representations of organs, tissues and bones, which are difficult to achieve using basic geometric objects. Similarly, complex devices or intricate mechanical systems may have designs that cannot be accurately represented within the constraints of such geometric models. Moreover, when the complexity of the model increases, geometry construction process becomes more difficult, tedious, time-consuming and error-prone [2]. Also, as each Monte Carlo geometry library uses its own format and construction method, reproducing the same geometry among different codes is a challenging task. Solution method: To face the problems stated above, the objective of this work is to implement the capability to simulate using irregular and adaptable meshed geometries in the penRed framework. This kind of meshes can be constructed using Computer-Aided Design (CAD) tools, the use of which is very widespread and streamline the design process. This feature has been implemented in a new geometry module named “MESH_BODY” specific for this kind of geometries. This one is freely available and usable within the official penRed package1. It can be used since penRed version 1.9.3b and above.
Address [Oliver, S.] Univ Politecn Valencia, Inst Seguridad Ind Radiofis & Medioambiental ISIRY, Cami Vera S-N, Valencia 46022, Spain
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:001172840800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6077
Permanent link to this record
 

 
Author Barberis, D. et al; Fernandez Casani, A.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Salt, J.; Sanchez, J.; Villaplana Perez, M.
Title The ATLAS EventIndex: A BigData Catalogue for All ATLAS Experiment Events Type Journal Article
Year 2023 Publication Computing and Software for Big Science Abbreviated Journal (up) Comput. Softw. Big Sci.
Volume 7 Issue Pages 2 - 21pp
Keywords
Abstract The ATLAS EventIndex system comprises the catalogue of all events collected, processed or generated by the ATLAS experiment at the CERN LHC accelerator, and all associated software tools to collect, store and query this information. ATLAS records several billion particle interactions every year of operation, processes them for analysis and generates even larger simulated data samples; a global catalogue is needed to keep track of the location of each event record and be able to search and retrieve specific events for in-depth investigations. Each EventIndex record includes summary information on the event itself and the pointers to the files containing the full event. Most components of the EventIndex system are implemented using BigData free and open-source software. This paper describes the architectural choices and their evolution in time, as well as the past, current and foreseen future implementations of all EventIndex components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6079
Permanent link to this record
 

 
Author Menendez, A.; Esperante, D.; Garcia-Olcina, R.; Torres, J.; Perez-Soler, J.; Marco, R.; Gimeno, B.; Martos, J.; Soret, J.
Title RF Acquisition System Based on μTCA for Testing of High-Gradient Acceleration Cavities Type Journal Article
Year 2022 Publication Electronics Abbreviated Journal (up) Electronics
Volume 11 Issue 5 Pages 720 - 22pp
Keywords radio frequency; accelerator cavities; mu TCA systems; Low Level RF system
Abstract The radio frequency (RF) laboratory hosted in the Corpuscular Physics Institute (IFIC) of the University of Valencia is designed to house a high-power and high-repetition-rate facility to test normal conduction RF accelerator cavities in the S-Band (2.9985 GHz) in order to perform R & D activities related to particle accelerator cavities. The system, which manages the entire process of RF signal generation, data acquisition and closed-loop control of the laboratory, is currently based on a modular and compact PXI platform system. This contribution details the development of a platform with similar features, but which is based on open architecture standards at both the hardware and software level. For this purpose, a complete system based on the μTCA platform has been developed. This new system must be able to work with accelerator cavities at other operating frequencies, such as 750 MHz, as well as to explore different options at firmware and software levels based on open-source codes.
Address [Menendez, Abraham; Esperante, Daniel; Marco, Ricardo; Gimeno, Benito] Univ Valencia, Inst Fis Corpuscular IF, CSIC, Paterna, Spain, Email: daniel.esperante@uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000772931900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5189
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M.
Title White Rabbit Expansion Board: Design, Architecture, and Signal Integrity Simulations Type Journal Article
Year 2023 Publication Electronics Abbreviated Journal (up) Electronics
Volume 12 Issue 16 Pages 3394 - 16pp
Keywords subnanosecond synchronization; White Rabbit; IEEE Std 1588-2019; virtual prototyping
Abstract The White Rabbit protocol allows synchronization and communication via an optical link in an integrated, modular, and scalable manner. It provides a solution to those applications that have very demanding requirements in terms of synchronization. Field-programmable gate arrays are used to implement the protocol; additionally, special hardware is needed to provide the necessary clock signals used by the dual-mixer time difference for precise phase measurement. In the present work, an expansion board that allows for White Rabbit functionality is presented. The expansion board contains the oscillators required by the White Rabbit protocol, one running at 125 MHz and another at 124.922 MHZ. The architecture of this board includes two oscillator systems for tests and comparison. One is based on VCOs and another on crystal oscillators running at the desired frequencies. In addition, it incorporates a temperature sensor, from where the medium access control address is extracted, an electrically erasable programmable read-only memory, a pulse-per-second output, and a USB UART to access the White Rabbit IP core at the field-programmable gate array. Finally, to ensure the quality of the layout design and guarantee the level of synchronization desired, the results of the power and signal integrity simulations are also presented.
Address [Real, Diego; Calvo, David; de Dios Zornoza, Juan; Manzaneda, Mario] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001056236300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5628
Permanent link to this record
 

 
Author El-Neaj, Y.A. et al; Bernabeu, J.
Title AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space Type Journal Article
Year 2020 Publication EPJ Quantum Technology Abbreviated Journal (up) EPJ Quantum Technol.
Volume 7 Issue 1 Pages 6 - 27pp
Keywords
Abstract We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126
Address [El-Neaj, Yousef Abou] Harvard Univ, Phys Dept, Cambridge, MA 02138 USA, Email: o.buchmueller@imperial.ac.uk
Corporate Author Thesis
Publisher Springeropen Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2662-4400 ISBN Medium
Area Expedition Conference
Notes WOS:000519468200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4325
Permanent link to this record