toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Feijoo, A.; Dai, L.R.; Abreu, L.M.; Oset, E. url  doi
openurl 
  Title Correlation function for the Tbb state: Determination of the binding, scattering lengths, effective ranges, and molecular probabilities Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 109 Issue 1 Pages 016014 - 8pp  
  Keywords  
  Abstract We perform a study of the (B*+B0), (BB+)-B-*0 correlation functions using an extension of the local hidden gauge approach which provides the interaction from the exchange of light vector mesons and gives rise to a bound state of these components in I = 0 with a binding energy of about 21 MeV. After that, we face the inverse problem of determining the low energy observables, scattering length and effective range for each channel, the possible existence of a bound state, and, if found, the couplings of such a state to each (B*+B0), (BB+)-B-*0 component as well as the molecular probabilities of each of the channels. We use the bootstrap method to determine these magnitudes and find that, with errors in the correlation function typical of present experiments, we can determine all these magnitudes with acceptable precision. In addition, the size of the source function of the experiment from where the correlation functions are measured can be also determined with a high precision.  
  Address [Feijoo, A.; Dai, L. R.; Oset, E.] Univ Valencia, Inst Invest Paterna, Dept Fis Teor, Ctr Mixto,CSIC, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001172361900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6078  
Permanent link to this record
 

 
Author Roca, L.; Song, J.; Oset, E. url  doi
openurl 
  Title Molecular pentaquarks with hidden charm and double strangeness Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D  
  Volume 109 Issue 9 Pages 094005 - 8pp  
  Keywords  
  Abstract We analyze theoretically the coupled-channel meson-baryon interaction with global flavor c<overline>cssn and c<overline>csss, where mesons are pseudoscalars or vectors, and baryons have JP = 1/2+ or 3/2+. The aim is to explore whether the nonlinear dynamics inherent in the unitarization process within coupled channels can dynamically generate double- and triple-strange pentaquark-type states (Pcss and Pcsss, respectively), for which there is no experimental evidence to date. We evaluate the s-wave scattering matrix by implementing unitarity in coupled channels, using potential kernels obtained from t-channel vector meson exchange. The required PPV and VVV vertices are obtained from Lagrangians derived through appropriate extensions of the local hidden gauge symmetry approach to the charm sector, while capitalizing on the symmetry of the spin and flavor wave function to evaluate the BBV vertex. We find four different poles in the double strange sector, some of them degenerate in spin. For the triple-strange channel, we find the meson-baryon interaction insufficient to generate a bound or resonance state through the unitary coupled-channel dynamics.  
  Address [Roca, L.] Univ Murcia, Dept Fis, E-30100 Murcia, Spain, Email: luisroca@um.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001224715500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6135  
Permanent link to this record
 

 
Author Xie, J.J.; Martinez Torres, A.; Oset, E.; Gonzalez, P. url  doi
openurl 
  Title Plausible explanation for the Delta(5/2)+(2000) puzzle Type Journal Article
  Year 2011 Publication Physical Review C Abbreviated Journal (down) Phys. Rev. C  
  Volume 83 Issue 5 Pages 055204 - 11pp  
  Keywords  
  Abstract From a Faddeev calculation for the pi-(Delta rho)(N5/2)-(1675) system we show the plausible existence of three dynamically generated I (J(P)) = 3/2(5/2(+)) baryon states below 2.3 GeV, whereas only two resonances, Delta(5/2)+ (1905)( ) and Delta(5/2)+(2000)(**), are cataloged in the Particle Data Book Review. Our results give theoretical support to data analyses extracting two distinctive resonances, Lambda(5/2)+(similar to 1740) and Lambda(5/2)+(similar to 2200), from which the mass of Delta(5/2)+ (2000) is estimated. We propose that these two resonances should be cataloged instead of Delta(5/2)+(2000). This proposal gets further support from the possible assignment of the other baryon states found in the approach in the I = 1/2, 3/2 with J(P) = 1/2(+), 3/2(+), 5/(2)+ sectors to known baryonic resonances. In particular, Delta(1/2)+(1750)(*) is naturally interpreted as a pi N-1/2-(1650) bound state.  
  Address [Xie, Ju-Jun; Oset, E.; Gonzalez, P.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, E-46071 Valencia, Spain, Email: xiejujun@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290522200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 626  
Permanent link to this record
 

 
Author Tolos, L.; Molina, R.; Oset, E.; Ramos, A. url  doi
openurl 
  Title (K)over-bar* mesons in dense matter Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal (down) Phys. Rev. C  
  Volume 82 Issue 4 Pages 045210 - 12pp  
  Keywords  
  Abstract We study the properties of (K) over bar* mesons in nuclear matter using a unitary approach in coupled channels within the framework of the local hidden gauge formalism and incorporating the (K) over bar pi decay channel in matter. The in-medium (K) over bar *N interaction accounts for Pauli blocking effects and incorporates the (K) over bar* self-energy in a self-consistent manner. We also obtain the (K) over bar* (off-shell) spectral function and analyze its behavior at finite density and momentum. At a normal nuclear matter density, the (K) over bar* meson feels a moderately attractive potential, while the (K) over bar* width becomes five times larger than in free space. We estimate the transparency ratio of the gamma A -> K+K*(-) A` reaction, which we propose as a feasible scenario at the present facilities to detect changes in the properties of the (K) over bar* meson in nuclear medium.  
  Address [Tolos, L.] Univ Groningen, Theory Grp KVI, NL-9747 AA Groningen, Netherlands, Email: tolos@kvi.nl  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283648400011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 335  
Permanent link to this record
 

 
Author Magas, V.K.; Yamagata-Sekihara, J.; Hirenzaki, S.; Oset, E.; Ramos, A. url  doi
openurl 
  Title Proton emission off nuclei induced by kaons in flight Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal (down) Phys. Rev. C  
  Volume 81 Issue 2 Pages 024609 - 10pp  
  Keywords  
  Abstract We study the (K-, p) reaction on nuclei with a 1 GeV/c momentum kaon beam, paying special attention to the region of emitted protons having kinetic energy above 600 MeV, which was used to claim a deeply attractive kaon nucleus optical potential. Our model describes the nuclear reaction in the framework of a local density approach and the calculations are performed following two different procedures: one is based on a many-body method using the Lindhard function and the other is based on a Monte Carlo simulation. The simulation method offers flexibility to account for processes other than kaon quasielastic scattering, such as K- absorption by one and two nucleons, producing hyperons, and allows consideration of final-state interactions of the K-, the p, and all other primary and secondary particles on their way out of the nucleus, as well as the weak decay of the produced hyperons into pi N. We find a limited sensitivity of the cross section to the strength of the kaon optical potential. We also show a serious drawback in the experimental setup-the requirement for having, together with the energetic proton, at least one charged particle detected in the decay counter surrounding the target-as we find that the shape of the original cross section is appreciably distorted, to the point of invalidating the claims made in the experimental paper on the strength of the kaon nucleus optical.  
  Address [Magas, V. K.; Ramos, A.] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain, Email: vladimir@ecm.ub.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278341300014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 432  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva