toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Aysto, J; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. doi  openurl
  Title Large Impact of the Decay of Niobium Isomers on the Reactor (v)over-bar(e) Summation Calculations Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal (down) Phys. Rev. Lett.  
  Volume 122 Issue 4 Pages 042502 - 6pp  
  Keywords  
  Abstract Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.  
  Address [Guadilla, V; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457139600009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3894  
Permanent link to this record
 

 
Author Estienne, M.; Fallot, M.; Algora, A.; Briz-Monago, J.; Bui, V.M.; Cormon, S.; Gelletly, W.; Giot, L.; Guadilla, V.; Jordan, D.; Le Meur, L.; Porta, A.; Rice, S.; Rubio, B.; Tain, J.L.; Valencia, E.; Zakari-Issoufou, A.A. url  doi
openurl 
  Title Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal (down) Phys. Rev. Lett.  
  Volume 123 Issue 2 Pages 022502 - 6pp  
  Keywords  
  Abstract A new summation method model of the reactor antineutrino energy spectrum is presented. It is updated with the most recent evaluated decay databases and with our total absorption gamma-ray spectroscopy measurements performed during the last decade. For the first time, the spectral measurements from the Daya Bay experiment are compared with the antineutrino energy spectrum computed with the updated summation method without any renormalization. The results exhibit a better agreement than is obtained with the Huber-Mueller model in the 2-5 MeV range, the region that dominates the detected flux. A systematic trend is found in which the antineutrino flux computed with the summation model decreases with the inclusion of more pandemonium-free data. The calculated flux obtained now lies only 1.9% above that detected in the Daya Bay experiment, a value that may be reduced with forthcoming new pandemonium-free data, leaving less room for a reactor anomaly. Eventually, the new predictions of individual antineutrino spectra for the U-235, Pu-239, Pu-241, and U-238 are used to compute the dependence of the reactor antineutrino spectral shape on the fission fractions.  
  Address [Estienne, M.; Fallot, M.; Briz-Monago, J.; Bui, V. M.; Cormon, S.; Giot, L.; Guadilla, V.; Le Meur, L.; Porta, A.; Zakari-Issoufou, A. -A.] Univ Nantes, CNRS, IN2P3, SUBATECH,IMT Atlantique, F-44307 Nantes, France, Email: magali.estienne@subatech.in2p3.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000474894200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4078  
Permanent link to this record
 

 
Author n_TOF Collaboration (Guerrero, C. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Neutron Capture on the s-Process Branching Point Tm-171 via Time-of-Flight and Activation Type Journal Article
  Year 2020 Publication Physical Review Letters Abbreviated Journal (down) Phys. Rev. Lett.  
  Volume 125 Issue 14 Pages 142701 - 8pp  
  Keywords  
  Abstract The neutron capture cross sections of several unstable nuclides acting as branching points in the s process are crucial for stellar nucleosynthesis studies. The unstable Tm-171 (t(1/2) = 1.92 yr) is part of the branching around mass A similar to 170 but its neutron capture cross section as a function of the neutron energy is not known to date. In this work, following the production for the first time of more than 5 mg of Tm-171 at the high-flux reactor Institut Laue-Langevin in France, a sample was produced at the Paul Scherrer Institute in Switzerland. Two complementary experiments were carried out at the neutron time-of-flight facility (nTOF) at CERN in Switzerland and at the SARAF liquid lithium target facility at Soreq Nuclear Research Center in Israel by time of flight and activation, respectively. The result of the time -of-flight experiment consists of the first ever set of resonance parameters and the corresponding average resonance parameters, allowing us to make an estimation of the Maxwellian-averaged cross sections (MACS) by extrapolation. The activation measurement provides a direct and more precise measurement of the MACS at 30 keV: 384 (40) mb, with which the estimation from the nTOF data agree at the limit of 1 standard deviation. This value is 2.6 times lower than the JEFF-3.3 and ENDF/B-VIII evaluations, 25% lower than that of the Bao et al. compilation, and 1.6 times larger than the value recommended in the KAlloNiS (v1) database, based on the only previous experiment. Our result affects the nucleosynthesis at the A similar to 170 branching, namely, the Yb-171 abundance increases in the material lost by asymptotic giant branch stars, providing a better match to the available pre-solar SiC grain measurements compared to the calculations based on the current JEFF-3.3 model-based evaluation.  
  Address [Guerrero, C.; Lerendegui-Marco, J.; Quesada, J. M.; Cortes-Giraldo, M. A.; Millan-Callado, M. A.; Praena, J.; Rodriguez-Gonzalez, T.; Sabate-Gilarte, M.] Univ Seville, Seville, Spain, Email: cguerrero4@us.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000574781200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4551  
Permanent link to this record
 

 
Author Phong, V.H. et al; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tain, J.L.; Tarifeño-Saldivia, A.; Tolosa-Delgado, A. doi  openurl
  Title Beta-Delayed One and Two Neutron Emission Probabilities South-East of Sn-132 and the Odd-Even Systematics in r-Process Nuclide Abundances Type Journal Article
  Year 2022 Publication Physical Review Letters Abbreviated Journal (down) Phys. Rev. Lett.  
  Volume 129 Issue 18 Pages 172701 - 7pp  
  Keywords  
  Abstract The beta-delayed one- and two-neutron emission probabilities (P-1n and P-2n) of 20 neutron-rich nuclei with N >= 82 have been measured at the RIBF facility of the RIKEN Nishina Center. P-1n of Ag-130;131, Cd-133;134, In-135;136, and (138;13)9Sn were determined for the first time, and stringent upper limits were placed on P-2n for nearly all cases. beta-delayed two-neutron emission (beta 2n) was unambiguously identified in Cd-133 and In-135;136, and their P-2n were measured. Weak beta 2n was also detected from Sn-137;138. Our results highlight the effect of the N = 82 and Z = 50 shell closures on beta-delayed neutron emission probability and provide stringent benchmarks for newly developed macroscopic-microscopic and self-consistent global models with the inclusion of a statistical treatment of neutron and. emission. The impact of our measurements on r-process nucleosynthesis was studied in a neutron star merger scenario. Our P-1n and P-2n have a direct impact on the  
  Address [Phong, V. H.; Nishimura, S.; Lorusso, G.; Liu, J.; Nishimura, N.; Ahn, D. S.; Baba, H.; Fukuda, N.; Go, S.; Ha, J.; Isobe, T.; Kiss, G. G.; Kubono, S.; Matsui, K.; Sakurai, H.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan, Email: phong@ribf.riken.jp;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000910940600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5458  
Permanent link to this record
 

 
Author n_TOF Collaboration (Amaducci, S. et al); Babiano-Suarez, V.; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Measurement of the 140Ceðn;γþ Cross Section at n_TOF and Its Astrophysical Implications for the Chemical Evolution of the Universe Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal (down) Phys. Rev. Lett.  
  Volume 132 Issue 12 Pages 122701 - 8pp  
  Keywords  
  Abstract 140Ce(n, gamma) is a key reaction for slow neutron -capture (s -process) nucleosynthesis due to being a bottleneck in the reaction flow. For this reason, it was measured with high accuracy (uncertainty approximate to 5%) at the n_TOF facility, with an unprecedented combination of a high purity sample and low neutron -sensitivity detectors. The measured Maxwellian averaged cross section is up to 40% higher than previously accepted values. Stellar model calculations indicate a reduction around 20% of the s -process contribution to the Galactic cerium abundance and smaller sizeable differences for most of the heavier elements. No variations are found in the nucleosynthesis from massive stars.  
  Address [Amaducci, S.; Cosentino, L.; Finocchiaro, P.; Brown, A.] INFN, Lab Nazl Sud, Catania, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001202102900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6074  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva