toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Morisi, S.; Peinado, E. url  doi
openurl 
  Title Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing Type Journal Article
  Year 2011 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B  
  Volume 701 Issue 4 Pages 451-457  
  Keywords Neutrinoless double beta decay; Neutrino masses and mixings; Flavor symmetries; Tri-bimaximal mixing; Neutrino hierarchy; Discrete symmetries  
  Abstract We propose a realization of the so-called bimodal/schizophrenic model proposed recently. We assume 54, the permutation group of four objects as flavor symmetry giving tri-bimaximal lepton mixing at leading order. In these models the second massive neutrino state is assumed quasi-Dirac and the remaining neutrinos are Majorana states. In the case of inverse mass hierarchy, the lower bound on the neutrinoless double beta decay parameter m(ee) is about two times that of the usual lower bound, within the range of sensitivity of the next generation of experiments.  
  Address [Morisi, S; Peinado, E] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: morisi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292994100011 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 700  
Permanent link to this record
 

 
Author Meloni, D.; Morisi, S.; Peinado, E. url  doi
openurl 
  Title Stability of dark matter from the D(4) x Z(2)(f) flavor group Type Journal Article
  Year 2011 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B  
  Volume 703 Issue 3 Pages 281-287  
  Keywords  
  Abstract We study a model based on the dihedral group D(4) in which the dark matter is stabilized by the interplay between a remnant Z(2) symmetry, of the same spontaneously broken non-abelian group, and an auxiliary Z(2)(f) introduced to eliminate unwanted couplings in the scalar potential. In the lepton sector the model is compatible with normal hierarchy only and predicts a vanishing reactor mixing angle, theta(13) = 0. Since m(nu 1) = 0, we also have a simple prediction for the effective mass in terms of the solar angle: vertical bar m(beta beta)vertical bar = vertical bar m(nu 2)vertical bar sin(2)theta circle dot similar to 10(-3) eV. There also exists a large portion of the model parameter space where the upper bounds on lepton flavor violating processes are not violated. We incorporate quarks in the same scheme finding that a description of the CKM mixing matrix is possible and that semileptonic K and D decays mediated by flavor changing neutral currents are under control.  
  Address [Meloni, D] Univ Roma Tre, Dipartimento Fis E Amaldi, I-00146 Rome, Italy, Email: meloni@fis.uniroma3.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295198300010 Approved no  
  Is ISI no International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 780  
Permanent link to this record
 

 
Author King, S.F.; Morisi, S.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Quark-lepton mass relation in a realistic A(4) extension of the Standard Model Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B  
  Volume 724 Issue 1-3 Pages 68-72  
  Keywords  
  Abstract We propose a realistic A(4) extension of the Standard Model involving a particular quark-lepton mass relation, namely that the ratio of the third family mass to the geometric mean of the first and second family masses are equal for down-type quarks and charged leptons. This relation, which is approximately renormalization group invariant, is usually regarded as arising from the Georgi-Jarlskog relations, but in the present model there is no unification group or supersymmetry. In the neutrino sector we propose a simple modification of the so-called Zee-Wolfenstein mass matrix pattern which allows an acceptable reactor angle along with a deviation of the atmospheric and solar angles from their bi-maximal values. Quark masses, mixing angles and CP violation are well described by a numerical fit.  
  Address [King, S. F.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: epeinado@Inf.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321538300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1500  
Permanent link to this record
 

 
Author Bonilla, C.; Morisi, S.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Relating quarks and leptons with the T-7 flavour group Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B  
  Volume 742 Issue Pages 99-106  
  Keywords  
  Abstract In this letter we present a model for quarks and leptons based on T-7 as flavour symmetry, predicting a canonical mass relation between charged leptons and down-type quarks proposed earlier. Neutrino masses are generated through a Type-I seesaw mechanism, with predicted correlations between the atmospheric mixing angle and neutrino masses. Compatibility with oscillation results leads to lower bounds for the lightest neutrino mass as well as for the neutrinoless double beta decay rates, even for normal neutrino mass hierarchy.  
  Address [Bonilla, Cesar; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350555900016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2155  
Permanent link to this record
 

 
Author Bonilla, C.; Ma, E.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Two-loop Dirac neutrino mass and WIMP dark matter Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal (down) Phys. Lett. B  
  Volume 762 Issue Pages 214-218  
  Keywords Neutrino masses and mixing; Dark matter stability  
  Abstract We propose a “scotogenic” mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two-loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical Diraconthat induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhances sensitivities to spin-independent WIMP dark matter search below m(h)/2.  
  Address [Bonillaa, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388473700029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2979  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva