toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Garcilazo, H.; Valcarce, A.; Vijande, J. url  doi
openurl 
  Title Doubly heavy baryon spectra guided by lattice QCD Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal (up) Phys. Rev. D  
  Volume 94 Issue 7 Pages 074003 - 8pp  
  Keywords  
  Abstract This paper provides results for the ground state and excited spectra of three-flavored doubly heavy baryons, bcn and bcs. We take advantage of the spin-independent interaction recently obtained to reconcile the lattice SU(3) QCD static potential and the results of nonperturbative lattice QCD for the triply heavy baryon spectra. We show that the spin-dependent potential might be constrained on the basis of nonperturbative lattice QCD results for the spin splittings of three-flavored doubly heavy baryons. Our results may also represent a challenge for future lattice QCD work, because a smaller lattice error could help in distinguishing between different prescriptions for the spin-dependent part of the interaction. Thus, by comparing with the reported baryon spectra obtained with parameters estimated from lattice QCD, one can challenge the precision of lattice calculations. The present work supports a coherent description of singly, doubly and triply heavy baryons with the same Cornell-like interacting potential. The possible experimental measurement of these states at LHCb is an incentive for this study.  
  Address [Garcilazo, H.] Inst Politecn Nacl, Escuela Super Fis & Matemat, Edificio 9, Mexico City 07738, DF, Mexico, Email: humberto@esfm.ipn.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384473600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2821  
Permanent link to this record
 

 
Author Garcilazo, H.; Valcarce, A.; Vijande, J. url  openurl
  Title Stable bound states of N's, Lambda's and Xi's Type Journal Article
  Year 2017 Publication Revista Mexicana de Fisica Abbreviated Journal (up) Rev. Mex. Fis.  
  Volume 63 Issue 5 Pages 411-422  
  Keywords Baryon-Baryon interactions; Faddeev equations; variational approaches  
  Abstract We review our recent work about the stability of strange few-body systems containing N's, Lambda's, and Xi's. We make use of local central Yukawa-type Malfliet-Tjon interactions reproducing the low-energy parameters and phase shifts of the nucleon-nucleon system and the latest updates of the hyperon-nucleon and hyperon-hyperon ESCO8c Nijmegen potentials. We solve the three-and four-body bound-state problems by means of Faddeev equations and a generalized Gaussian variational method, respectively. The hypertriton, Lambda np(I)J(P) = (1/2)1/2(+), is bound by 144 keV; the recently discussed Lambda nn (I)J(P) = (1/2)1/2(+) system is unbound, as well as the Lambda Lambda nn (I)J(P) = (1)0(+) system, being just above threshold. Our results indicate that the Xi NN, Xi Xi N and Xi Xi NN systems with maximal isospin might be bound.  
  Address [Garcilazo, H.] Inst Politecn Nacl, Escuela Super Fis & Matemat, Edificio 9, Mexico City 07738, DF, Mexico, Email: humberto@esfm.ipn.mx;  
  Corporate Author Thesis  
  Publisher Soc Mexicana Fisica Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-001x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000410015700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3291  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva