|   | 
Details
   web
Records
Author NEXT Collaboration (Ferrario, P. et al); Laing, A.; Lopez-March, N.; Gomez-Cadenas, J.J.; Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 01 Issue 1 Pages 104 - 18pp
Keywords Dark Matter; Double Beta Decay
Abstract The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Q(beta beta). This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of Na-22 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the Th-228 decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 +/- 1.4 (stat.)%, while maintaining an efficiency of 66.7 +/- 1.% for signal events.
Address [Ferrario, P.; Laing, A.; Lopez-March, N.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000370438900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2560
Permanent link to this record
 

 
Author NEXT Collaboration (Martin-Albo, J. et al); Muñoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gomez-Cadenas, J.J.; Alvarez, V.; Carcel, S.; Carrion, J.V.; Cervera-Villanueva, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Novella, P.; Palmeiro, P.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Sensitivity of NEXT-100 to neutrinoless double beta decay Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 05 Issue 5 Pages 159 - 30pp
Keywords Dark Matter and Double Beta Decay (experiments); Rare decay
Abstract NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0v beta beta) decay of Xe-136. The detector possesses two features of great value for 0v beta beta searches: energy resolution better than 1% FWHM at the Q value of Xe-136 and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 x 10(-4) counts keV(-1) kg(-1) yr(-1). Accordingly, the detector will reach a sensitivity to the 0v beta beta-decay half-life of 2.8 x 10(25) years (90% CL) for an exposure of 100 kg.year, or 6.0 x 10(25) years after a run of 3 effective years.
Address [Martin-Albo, J.; Munoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Carrion, J. V.; Cervera, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: justo.martin-albo@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000391745200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2928
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P.
Title Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280 Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 10 Issue 10 Pages 114 - 43pp
Keywords Other experiments
Abstract The electron (anti-)neutrino component of the T2K neutrino beam constitutes the largest background in the measurement of electron (anti-)neutrino appearance at the far detector. The electron neutrino scattering is measured directly with the T2K off-axis near detector, ND280. The selection of the electron (anti-)neutrino events in the plastic scintillator target from both neutrino and anti-neutrino mode beams is discussed in this paper. The flux integrated single differential charged-current inclusive electron (anti-)neutrino cross-sections, d sigma/dp and d sigma/d cos(theta), and the total cross-sections in a limited phase-space in momentum and scattering angle (p 300 MeV/c and theta <= 45 degrees) are measured using a binned maximum likelihood fit and compared to the neutrino Monte Carlo generator predictions, resulting in good agreement.
Address [Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000583585900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4589
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Agramunt, J.; Ball, M.; Bayarri, J.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Perez, J.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N.
Title SiPMs coated with TPB: coating protocol and characterization for NEXT Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal (up) J. Instrum.
Volume 7 Issue Pages P02010
Keywords
Abstract Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking read-out in NEXT, a neutrinoless beta beta decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifter tetraphenyl butadiene (TPB). In this paper we describe the protocol developed for coating the SiPMs with TPB and the measurements performed for characterizing the coatings as well as the performance of the coated sensors in the UV-VUV range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000303940900076 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1028
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N.
Title NEXT-100 Technical Design Report (TDR). Executive summary Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal (up) J. Instrum.
Volume 7 Issue Pages T06001 - 34pp
Keywords Detector design and construction technologies and materials; Time projection chambers
Abstract In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (beta beta 0v) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 x 8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.
Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot, M.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000306072000030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1097
Permanent link to this record