toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Romero-Lopez, F.; Sharpe, S.R.; Blanton, T.D.; Briceno, R.A.; Hansen, M.T. url  doi
openurl 
  Title Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.  
  Volume 10 Issue 10 Pages 007 - 43pp  
  Keywords Lattice QCD; Scattering Amplitudes  
  Abstract In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, we extend previous numerical studies of the quantization condition to explore the finite-volume signature for a variety of two- and three-particle interactions. We determine the spectrum for parameters such that the system contains both dimers (two-particle bound states) and one or more trimers (in which all three particles are bound), and also for cases where the two-particle subchannel is resonant. We also show how the quantization condition provides a tool for determining infinite-volume dimer-particle scattering amplitudes for energies below the dimer breakup. We illustrate this for a series of examples, including one that parallels physical deuteron-nucleon scattering. All calculations presented here are restricted to the case of three identical scalar particles.  
  Address [Romero-Lopez, Fernando] Univ Valencia, CSIC, IFIC, Paterna 46980, Spain, Email: fernando.romero@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000497979000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4207  
Permanent link to this record
 

 
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R. url  doi
openurl 
  Title Generalizing the relativistic quantization condition to include all three-pion isospin channels Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.  
  Volume 07 Issue 7 Pages 047 - 49pp  
  Keywords Lattice QCD; Scattering Amplitudes  
  Abstract We present a generalization of the relativistic, finite-volume, three-particle quantization condition for non-identical pions in isosymmetric QCD. The resulting formalism allows one to use discrete finite-volume energies, determined using lattice QCD, to constrain scattering amplitudes for all possible values of two- and three-pion isospin. As for the case of identical pions considered previously, the result splits into two steps: the first defines a non-perturbative function with roots equal to the allowed energies, E-n(L), in a given cubic volume with side-length L. This function depends on an intermediate three-body quantity, denoted K-df;3, which can thus be constrained from lattice QCD input. The second step is a set of integral equations relating K-df,K-3 to the physical scattering amplitude, M-3. Both of the key relations, E-n(L) <-> K-df,K-3 and K-df,K-3 <-> M-3, are shown to be block-diagonal in the basis of definite three-pion isospin, I-pi pi pi, so that one in fact recovers four independent relations, corresponding to I-pi pi pi = 0; 1; 2; 3. We also provide the generalized threshold expansion of K-df,K-3 for all channels, as well as parameterizations for all three-pion resonances present for I-pi pi pi = 0 and I-pi pi pi = 1. As an example of the utility of the generalized formalism, we present a toy implementation of the quantization condition for I-pi pi pi = 0, focusing on the quantum numbers of the omega and h(1) resonances.  
  Address [Hansen, Maxwell T.] Univ Geneva, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: maxwell.hansen@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000551981200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4474  
Permanent link to this record
 

 
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R. url  doi
openurl 
  Title Decay amplitudes to three hadrons from finite-volume matrix elements Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.  
  Volume 04 Issue 4 Pages 113 - 44pp  
  Keywords Lattice QCD; Kaon Physics  
  Abstract We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K -> 3 pi weak decay, the isospin-breaking eta -> 3 pi QCD transition, and the electromagnetic gamma (*) -> 3 pi amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g – 2.  
  Address [Hansen, Maxwell T.] Univ Edinburgh, Sch Phys & Astron, Higgs Ctr Theoret Phys, Edinburgh EH9 3FD, Midlothian, Scotland, Email: maxwell.hansen@ed.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000640574400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4789  
Permanent link to this record
 

 
Author Martinez Torres, A.; Khemchandani, K.P.; Navarra, F.S.; Nielsen, M.; Oset, E. url  doi
openurl 
  Title The role of f(0)(1710) in the phi omega threshold peak of J/Psi -> gamma phi omega Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal (up) Phys. Lett. B  
  Volume 719 Issue 4-5 Pages 388-393  
  Keywords  
  Abstract We study the process J/Psi -> gamma phi omega, measured by the BES experiment, where a neat peak close to the phi omega threshold is observed and is associated to a scalar meson resonance around 1800 MeV. We make the observation that a scalar resonance coupling to phi omega unavoidably couples strongly to K (K) over bar, but no trace of a peak is seen in the K (K) over bar spectrum of the J/Psi -> gamma K (K) over bar at this energy. This serves us to rule out the interpretation of the observed peak as a signal of a new resonance. After this is done, a thorough study is performed on the production of a pair of vector mesons and how its interaction leads necessarily to a peak in the J/Psi -> gamma phi omega reaction close to the phi omega threshold, due to the dynamical generation of the f(0)(1710) resonance by the vector-vector interaction. We then show that both the shape obtained for the phi omega mass distribution, as well as the strength are naturally reproduced by this mechanism. The work also explains why the phi omega peak is observed in the BES experiment and not in other reactions, like B-+/- -> K-+/-phi omega of Belle.  
  Address [Martinez Torres, A.; Khemchandani, K. P.; Navarra, F. S.; Nielsen, M.; Oset, E.] Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil, Email: amartine@if.usp.br  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315316900020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1377  
Permanent link to this record
 

 
Author Albaladejo, M.; Nielsen, M.; Oset, E. url  doi
openurl 
  Title Ds0*(+/-)(2317) and K D scattering from Bs(0) decay Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal (up) Phys. Lett. B  
  Volume 746 Issue Pages 305-310  
  Keywords  
  Abstract We study the (B) over bar (0)(s) -> D-s(-)(KD)(+) weak decay, and look at the KD invariant mass distribution, for which we use recent lattice QCD results for the KDinteraction from where the D-s0*(2317) resonance appears as a KD bound state. Since there are not yet experimental data on this reaction, in a second step we propose an analysis method to obtain information on the D-s0* (2317) resonance from the future experimental KD mass distribution in this decay. For this purpose, we generate synthetic data taking a few points from our theoretical distribution, to which we add a 5% or 10% error. With this analysis method, we prove that one can obtain from these “data” the existence of a bound KD state, the KD scattering length and effective range, and most importantly, the KD probability in the wave function of the bound state obtained, which was found to be largely dominant in lattice QCD studies. This means that one can obtain information on the nature of the D-s0*(+) (2317) resonance from the implementation of this experiment, in the line of finding the structure of resonances, which is one of the main aims in hadron spectroscopy.  
  Address [Albaladejo, Miguel; Oseta, Eulogio] Univ Valencia, CSIC, Inst Invest Paterna, Ctr Mixto,Dept Fis Teor, Valencia 46071, Spain, Email: Miguel.Albaladejo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000355378200048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2248  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva