toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caputo, A.; Hernandez, P.; Kekic, M.; Lopez-Pavon, J.; Salvado, J. url  doi
openurl 
  Title The seesaw path to leptonic CP violation Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C  
  Volume 77 Issue 4 Pages 258 - 7pp  
  Keywords  
  Abstract Future experiments such as SHiP and highintensity e(+)e(-) colliders will have a superb sensitivity to heavy Majorana neutrinos with masses below M-Z. We show that the measurement of the mixing to electrons and muons of one such state could establish the existence of CP violating phases in the neutrino mixing matrix, in the context of low-scale seesaw models. We quantify in the minimal model the CP reach of these future experiments, and demonstrate that CP violating phases in the mixing matrix could be established at 5 sigma CL in a very significant fraction of parameter space.  
  Address [Caputo, A.; Hernandez, P.; Kekic, M.; Salvado, J.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: andrea.caputo@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400079300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3111  
Permanent link to this record
 

 
Author Esteban, I.; Lopez-Pavon, J.; Martinez-Soler, I.; Salvado, J. url  doi
openurl 
  Title Looking at the axionic dark sector with ANITA Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C  
  Volume 80 Issue 3 Pages 259 - 9pp  
  Keywords  
  Abstract The ANITA experiment has recently observed two anomalous events emerging from well below the horizon. Even though they are consistent with tau cascades, a high-energy Standard Model or Beyond the Standard Model explanation is challenging and in tension with other experiments. We study under which conditions the reflection of generic radio pulses can reproduce these signals. Furthermore, we propose that these pulses can be resonantly produced in the ionosphere via axion-photon conversion. This naturally explains the direction and polarization of the events and avoids other experimental bounds.  
  Address [Esteban, I; Salvado, J.] Univ Barcelona, Dept Fis Quant & Astrofis, Diagonal 647, E-08028 Barcelona, Spain, Email: ivan.esteban@fqa.ub.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521957300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4345  
Permanent link to this record
 

 
Author Agrawal, P. et al; Hernandez, P.; Lopez-Pavon, J. url  doi
openurl 
  Title Feebly-interacting particles: FIPs 2020 workshop report Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C  
  Volume 81 Issue 11 Pages 1015 - 137pp  
  Keywords  
  Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.  
  Address [Agrawal, P.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England, Email: gaia.lanfranchi@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000720658000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5043  
Permanent link to this record
 

 
Author Drewes, M.; Klaric, J.; Lopez-Pavon, J. url  doi
openurl 
  Title New benchmark models for heavy neutral lepton searches Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C  
  Volume 82 Issue 12 Pages 1176 - 11pp  
  Keywords  
  Abstract The sensitivity of direct searches for heavy neutral leptons (HNLs) in accelerator-based experiments depends strongly on the particles properties. Commonly used benchmark scenarios are important to ensure comparability and consistency between experimental searches, re-interpretations, and sensitivity studies for different facilities. In models where the HNLs are primarily produced and decay through the weak interaction, benchmarks are in particular defined by fixing the relative strengths of their mixing with SM neutrinos of different flavours, and the interpretation of experimental data is known to strongly depend on those ratios. The commonly used benchmarks in which a single HNL flavour exclusively interacts with one Standard Model generation do not reflect what is found in realistic neutrino mass models. We identify two additional benchmarks for accelerator-based direct HNL searches, which we primarily select based on the requirement to provide a better approximation for the phenomenology of realistic neutrino mass models in view of present and future neutrino oscillation data.  
  Address [Drewes, M.; Klaric, J.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain La Neuve, Belgium, Email: marco.drewes@uclouvain.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000906204200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5446  
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Lopez-Pavon, J.; No, J.M.; Ota, T.; Rosauro-Alcaraz, S. url  doi
openurl 
  Title nu Electroweak baryogenesis: the scalar singlet strikes back Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C  
  Volume 83 Issue 8 Pages 715 - 23pp  
  Keywords  
  Abstract We perform a comprehensive scan of the parameter space of a general singlet scalar extension of the Standard Model to identify the regions which can lead to a strong first-order phase transition, as required by the electroweak baryogenesis mechanism. We find that taking into account bubble nucleation is a fundamental constraint on the parameter space and present a conservative and fast estimate for it so as to enable efficient parameter space scanning. The allowed regions turn out to be already significantly probed by constraints on the scalar mixing from Higgs signal strength measurements. We also consider the addition of new neutrino singlet fields with Yukawa couplings to both scalars and forming heavy (pseudo)-Dirac pairs, as in the linear or inverse Seesaw mechanisms for neutrino mass generation. We find that their inclusion does not alter the allowed parameter space from early universe phenomenology in a significant way. Conversely, there are allowed regions of the parameter space where the presence of the neutrino singlets would remarkably modify the collider phenomenology, yielding interesting new signatures in Higgs and singlet scalar decays.  
  Address [Fernandez-Martinez, E.; No, J. M.; Ota, T.] Univ Autonoma Madrid, CSIC, Dept Fis Teor, IFT UAM, Madrid 28049, Spain, Email: rosauro@ijclab.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001045200700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5609  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva