toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author IGISOL Collaboration (Briz, J.A. et al); Algora, A.; Tain, J.L.; Guadilla, V.; Agramunt, J.; Estevez, E.; Jordan, M.D.; Molina, F.; Montaner-Piza, A.; Orrigo, S.E.A.; Perez, A.B.; Rubio, B. doi  openurl
  Title Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra determination Type Journal Article
  Year 2016 Publication Acta Physica Polonica B Abbreviated Journal (up) Acta Phys. Pol. B  
  Volume 47 Issue 3 Pages 755-762  
  Keywords  
  Abstract The contribution of each fission fragment to the reactor antineutrino spectra was determined using the summation method based on the existing information on fission yields and decay data contained in nuclear databases and the reactor evolution code MURE. The beta decay of some of the main contributors has been studied using the Total Absorption Spectroscopy (TAS) technique during two experimental campaigns at the IGISOL facility, in Jyvaskyla (Finland). Results on the decay of Rb-92, the most important contributor in the 4-8 MeV energy region are reported. The status of the analysis of the second experiment is presented as well.  
  Address [Briz, J. A.; Zakari-Issoufou, A-A; Fallot, M.; Porta, A.; Bui, V. M.; Cormon, S.; Cucoanes, A.; Estienne, M.; Shiba, T.] Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS,IN2P3, Nantes, France  
  Corporate Author Thesis  
  Publisher Wydawnictwo Uniwersytetu Jagiellonskiego Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4254 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373495500018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2624  
Permanent link to this record
 

 
Author Viñals, S.; Nacher, E.; Tengblad, O.; Borge, M.J.G.; Briz, J.A.; Gad, A.; Munch, M.; Perea, A. doi  openurl
  Title Calibration and response function of a compact silicon-detector set-up for charged-particle spectroscopy using GEANT4 Type Journal Article
  Year 2021 Publication European Physical Journal A Abbreviated Journal (up) Eur. Phys. J. A  
  Volume 57 Issue 2 Pages 49 - 9pp  
  Keywords  
  Abstract A complete methodology for detector calibration and energy-loss correction in charged-particle spectroscopy is presented. This has been applied to a compact set-up of four silicon detectors used for beta-delayed particle spectroscopy. The characterisation of the set-up was carried out using GEANT4 Monte Carlo simulations and standard alpha-calibration sources. The response function of the system was in this way accurately determined to be used for spectral unfolding.  
  Address [Vinals, S.; Tengblad, O.; Borge, M. J. G.; Briz, J. A.; Perea, A.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: enrique.nacher@csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000615748600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4710  
Permanent link to this record
 

 
Author Nacher, E.; Briz, J.A.; Nerio, A.N.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Cieplicka-Orynczak, N.; Maj, A.; Mazurek, K.; Olko, P.; Zieblinski, M.; Borge, M.J.G. url  doi
openurl 
  Title Characterization of a novel proton-CT scanner based on Silicon and LaBr3(Ce) detectors Type Journal Article
  Year 2024 Publication European Physical Journal Plus Abbreviated Journal (up) Eur. Phys. J. Plus  
  Volume 139 Issue 5 Pages 404 - 9pp  
  Keywords  
  Abstract Treatment planning systems at proton-therapy centres entirely use X-ray computed tomography (CT) as primary imaging technique to infer the proton treatment doses to tumour and healthy tissues. However, proton stopping powers in the body, as derived from X-ray images, suffer from important proton-range uncertainties. In order to reduce this uncertainty in range, one could use proton-CT images instead. The main goal of this work is to test the capabilities of a newly-developed proton-CT scanner, based on the use of a set of tracking detectors and a high energy resolution scintillator for the residual energy of the protons. Different custom-made phantoms were positioned at the field of view of the scanner and were irradiated with protons at the CCB proton-therapy center in Krakow. We measured with the phantoms at different angles and produced sinograms that were used to obtain reconstructed images by Filtered Back-Projection. The obtained images were used to determine the capabilities of our scanner in terms of spatial resolution and proton Relative Stopping Power (RSP) mapping and validate its use as proton-CT scanner. The results show that the scanner can produce medium-high quality images, with spatial resolution better than 2 mm in radiography, below 3 mm in tomography and resolving power in the RSP comparable to other state-of-the-art pCT scanners.  
  Address [Nacher, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46980, Spain, Email: enrique.nacher@csic.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001218502700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6123  
Permanent link to this record
 

 
Author Briz, J.A.; Nerio, A.N.; Ballesteros, C.; Borge, M.J.G.; Martinez, P.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Maj, A.; Olko, P.; Parol, W.; Pedracka, A.; Sowicki, B.; Zieblinski, M.; Nacher, E. url  doi
openurl 
  Title Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators Type Journal Article
  Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal (up) IEEE Trans. Nucl. Sci.  
  Volume 69 Issue 4 Pages 696-702  
  Keywords LaBr3; particle tracking; proton computed tomography (pCT); proton radiograph; proton therapy; scintillation detectors; silicon detectors  
  Abstract Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and gamma-ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.  
  Address [Briz, J. A.; Nerio, A. N.; Ballesteros, C.; Borge, M. J. G.; Martinez, P.; Perea, A.; Tavora, V. G.; Tengblad, O.] Inst Estruct Mat CSIC, Madrid 28006, Spain, Email: jose.briz@csic.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000803113800017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5245  
Permanent link to this record
 

 
Author Algora, A.; Ganioglu, E.; Sarriguren, P.; Guadilla, V.; Fraile, L.M.; Nacher, E.; Rubio, B.; Tain, J.L.; Agramunt, J.; Gelletly, W.; Briz, J.A.; Cakirli, R.B.; Fallot, M.; Jordan, D.; Halasz, Z.; Kuti, I.; Montaner, A.; Onillon, A.; Orrigo, S.E.A.; Cerdan, A.P.; Rice, S.; Vedia, V.; Valencia, E. url  doi
openurl 
  Title Total absorption gamma-ray spectroscopy study of the beta-decay of Hg-186 Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal (up) Phys. Lett. B  
  Volume 819 Issue Pages 136438 - 7pp  
  Keywords Betadecay; Totalabsorption spectroscopy; Shape coexistence  
  Abstract The Gamow-Teller strength distribution of the decay of Hg-186 into Au-186 has been determined for the first time using the total absorption gamma spectroscopy technique and has been compared with theoretical QRPA calculations using the SLy4 Skyrme force. The measured Gamow-Teller strength distribution and the half-life are described by mixing oblate and prolate configurations independently in the parent and daughter nuclei. In this theoretical framework the best description of the experimental beta strength is obtained with dominantly prolate components for both parent Hg-186 and daughter Au-186. The approach also allowed us to determine an upper limit of the oblate component in the parent state. The complexity of the analysis required the development of a new approach in the analysis of the X-ray gated total absorption spectrum.  
  Address [Algora, A.; Guadilla, V; Nacher, E.; Rubio, B.; Tain, J. L.; Agramunt, J.; Jordan, D.; Montaner, A.; Orrigo, S. E. A.; Cerdan, A. Perez; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: algora@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000679259200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4923  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva