toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Oliver, S.; Gimenez-Alventosa, V.; Berumen, F.; Gimenez, V.; Beaulieu, L.; Ballester, F.; Vijande, J. doi  openurl
  Title Benchmark of the PenRed Monte Carlo framework for HDR brachytherapy Type Journal Article
  Year 2023 Publication Zeitschrift für Medizinische Physik Abbreviated Journal (down) Z. Med. Phys.  
  Volume 33 Issue 4 Pages 511-528  
  Keywords Monte Carlo; PenRed; Brachytherapy; DICOM; Medical physics  
  Abstract Purpose: The purpose of this study is to validate the PenRed Monte Carlo framework for clinical applications in brachytherapy. PenRed is a C++ version of Penelope Monte Carlo code with additional tallies and utilities. Methods and materials: Six benchmarking scenarios are explored to validate the use of PenRed and its improved bachytherapy-oriented capabilities for HDR brachytherapy. A new tally allowing the evaluation of collisional kerma for any material using the track length kerma estimator and the possibility to obtain the seed positions, weights and directions processing directly the DICOM file are now implemented in the PenRed distribution. The four non-clinical test cases developed by the Joint AAPM-ESTRO-ABG-ABS WG-DCAB were evaluated by comparing local and global absorbed dose differences with respect to established reference datasets. A prostate and a palliative lung cases, were also studied. For them, absorbed dose ratios, global absorbed dose differences, and cumulative dose-volume histograms were obtained and discussed. Results: The air-kerma strength and the dose rate constant corresponding to the two sources agree with the reference datatests within 0.3% (Sk) and 0.1% (K). With respect to the first three WG-DCAB test cases, more than 99.8% of the voxels present local (global) differences within +/- 1%(+/- 0.1%) of the reference datasets. For test Case 4 reference dataset, more than 94.9%(97.5%) of voxels show an agreement within +/- 1%(+/- 0.1%), better than similar benchmarking calculations in the literature. The track length kerma estimator scorer implemented increases the numerical efficiency of brachytherapy calculations two orders of magnitude, while the specific brachytherapy source allows the user to avoid the use of error-prone intermediate steps to translate the DICOM information into the simulation. In both clinical cases, only minor absorbed dose differences arise in the low-dose isodoses. 99.8% and 100% of the voxels have a global absorbed dose difference ratio within +/- 0.2%for the prostate and lung cases, respectively. The role played by the different segmentation and composition material in the bone structures was discussed, obtaining negligible absorbed dose differ-ences. Dose-volume histograms were in agreement with the reference data.Conclusions: PenRed incorporates new tallies and utilities and has been validated for its use for detailed and precise high-dose-rate brachytherapy simulations.  
  Address [Oliver, S.] Univ Politecn Valencia, Inst Segur Ind, Radiofis & Medioambiental ISIRYM, Camide Vera s n, Valencia 46022, Spain, Email: sanolgi@upvnet.upv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0939-3889 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001137118400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5885  
Permanent link to this record
 

 
Author Moretti, F.; Bombacigno, F.; Montani, G. url  doi
openurl 
  Title The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas Type Journal Article
  Year 2021 Publication Universe Abbreviated Journal (down) Universe  
  Volume 7 Issue 12 Pages 496 - 28pp  
  Keywords gravitational waves; gauge-invariant method; Landau damping; macroscopic gravity  
  Abstract We discuss some general and relevant features of longitudinal gravitational modes in Horndeski gravity and their interaction with matter media. Adopting a gauge-invariant formulation, we clarify how massive scalar and vector fields can induce additional transverse and longitudinal excitations, resulting in breathing, vector, and longitudinal polarizations. We review, then, the interaction of standard gravitational waves with a molecular medium, outlining the emergence of effective massive gravitons, induced by the net quadrupole moment due to molecule deformation. Finally, we investigate the interaction of the massive mode in Horndeski gravity with a noncollisional medium, showing that Landau damping phenomenon can occur in the gravitational sector as well. That allows us to introduce the concept of “gravitational plasma”, where inertial forces associated with the background field play the role of cold ions in electromagnetic plasma.  
  Address [Moretti, Fabio; Montani, Giovanni] Sapienza Univ Rome, Dept Phys, Ple Aldo Moro 5, I-00185 Rome, Italy, Email: fabio.moretti@uniroma1.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000741918900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5076  
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A. url  doi
openurl 
  Title Stringy Signals from Large-Angle Correlations in the Cosmic Microwave Background? Type Journal Article
  Year 2022 Publication Universe Abbreviated Journal (down) Universe  
  Volume 8 Issue 8 Pages 396 - 13pp  
  Keywords cosmic microwave background; angular correlations; inflation; string theory  
  Abstract We interpret the lack of large-angle temperature correlations and the even-odd parity imbalance observed in the cosmic microwave background (CMB) by COBE, WMAP and Planck satellite missions as a possible stringy signal ultimately stemming from a composite inflaton field (e.g., a fermionic condensate). Based on causality arguments and a Fourier analysis of the angular two-point correlation function, two infrared cutoffs k(min)(even,odd) (satisfying k(min)(even) similar or equal to 2k(min)(odd)) are introduced to the CMB power spectrum associated, respectively, with periodic and antiperiodic boundary conditions of the fermionic constituents (echoing the Neveu-Schwarz-Ramond model in superstring theory), without resorting to any particular model.  
  Address [Sanchis-Lozano, Miguel-Angel] Univ Valencia, Dept Theoret Phys, Doctor Moliner 50, Burjassot 46011, Spain, Email: miguel.angel.sanchis@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000845107300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5344  
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J. doi  openurl
  Title Hartree-Fock Calculations in Semi-Infinite Matter with Gogny Interactions Type Journal Article
  Year 2023 Publication Universe Abbreviated Journal (down) Universe  
  Volume 9 Issue 9 Pages 398 - 11pp  
  Keywords Nuclear Density Functional Theory; semi-infinite nuclear matter; Hartree-Fock equations; 21.60.Jz; 21.65.-f; 21.65.Mn  
  Abstract Hartree-Fock equations in semi-infinite nuclear matter for finite range Gogny interactions are presented together with a detailed numerical scheme to solve them. The value of the surface energy is then extracted and given for standard Gogny interactions.  
  Address [Davesne, Dany] Univ Lyon 1, Inst Phys Infinis Lyon 2, CNRS, IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001074530100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5693  
Permanent link to this record
 

 
Author Lledo, M.A. url  doi
openurl 
  Title Superfields, Nilpotent Superfields and Superschemes dagger Type Journal Article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal (down) Symmetry-Basel  
  Volume 12 Issue 6 Pages 1024 - 32pp  
  Keywords supergeometry; superfields; quantum field theory  
  Abstract We interpret superfields in a functorial formalism that explains the properties that are assumed for them in the physical applications. We study the non-trivial relation of scalar superfields with the defining sheaf of the supermanifold of super spacetime. We also investigate in the present work some constraints that are imposed on the superfields, which allow for non-trivial solutions. They give rise to superschemes that, generically, are not regular, that is they do not define a standard supermanifold.  
  Address [Antonia Lledo, Maria] Univ Valencia, Dept Fis Teor, C Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: maria.lledo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000550827300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4468  
Permanent link to this record
 

 
Author Yamamoto, H. doi  openurl
  Title The International Linear Collider Project-Its Physics and Status Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal (down) Symmetry-Basel  
  Volume 13 Issue 4 Pages 674 - 15pp  
  Keywords Higgs particle; elementary particles; standard theory; linear collider; dark matter; top quark  
  Abstract The discovery of Higgs particle has ushered in a new era of particle physics. Even though the list of members of the standard theory of particle physics is now complete, the shortcomings of the theory became ever more acute. It is generally considered that the best solution to the problems is an electron-positron collider that can study Higgs particle with high precision and high sensitivity; namely, a Higgs factory. Among a few candidates for Higgs factory, the International Linear Collider (ILC) is currently the most advanced in its program. In this article, we review the physics and the project status of the ILC including its energy expandability.  
  Address [Yamamoto, Hitoshi] Tohoku Univ, Grad Sch Sci, Sendai, Miyagi 9800812, Japan, Email: yhitoshi@epx.phys.tohoku.ac.jp  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000643622400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4797  
Permanent link to this record
 

 
Author Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title Particle Creation and the Schwinger Model Type Journal Article
  Year 2022 Publication Symmetry-Basel Abbreviated Journal (down) Symmetry-Basel  
  Volume 14 Issue 11 Pages 2435 - 9pp  
  Keywords Schwinger model; semiclassical theory; particle creation  
  Abstract We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime.  
  Address [Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Fac Fis, Dept Fis Teor & IFIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000895122100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5432  
Permanent link to this record
 

 
Author Martin-Luna, P.; Esperante, D.; Prieto, A.F.; Fuster-Martinez, N.; Rivas, I.G.; Gimeno, B.; Ginestar, D.; Gonzalez-Iglesias, D.; Hueso, J.L.; Llosa, G.; Martinez-Reviriego, P.; Meneses-Felipe, A.; Riera, J.; Regueiro, P.V.; Hueso-Gonzalez, F. doi  openurl
  Title Simulation of electron transport and secondary emission in a photomultiplier tube and validation Type Journal Article
  Year 2024 Publication Sensors and Actuators A-Physical Abbreviated Journal (down) Sens. Actuator A-Phys.  
  Volume 365 Issue Pages 114859 - 10pp  
  Keywords Photomultiplier tube; Photodetector; Proton therapy; Monte Carlo simulation; Measurement  
  Abstract The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.  
  Address [Martin-Luna, Pablo; Esperante, Daniel; Fuster-Martinez, Nuria; Gimeno, Benito; Gonzalez-Iglesias, Daniel; Llosa, Gabriela; Martinez-Reviriego, Pablo; Meneses-Felipe, Alba; Hueso-Gonzalez, Fernando] CSIC UV, Inst Fis Corpuscular IFIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: pablo.martin@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-4247 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131902700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5876  
Permanent link to this record
 

 
Author de Azcarraga, J.A. doi  openurl
  Title The new Spanish educational legislation: why public education will not improve Type Journal Article
  Year 2022 Publication Revista Española de Pedagogía Abbreviated Journal (down) Rev. Esp. Pedagog.  
  Volume 80 Issue 281 Pages 111-129  
  Keywords Forthcoming Spanish educational legislation; primary school; secondary education; universities  
  Abstract This paper provides some reasons that explain, in the view of the author, why the present eagerness of the Spanish Educational Authorities to reform all levels of education, from primary school to the universities, will not improve the quality of the Spanish educational system.  
  Address [Adolfo de Azcarraga, Jose] Univ Valencia, Fis Teor, Valencia, Spain, Email: j.a.de.azcarraga@ific.uv.es  
  Corporate Author Thesis  
  Publisher Univ Int Rioja-Unir Place of Publication Editor  
  Language Spanish Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-9461 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000752024500007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5125  
Permanent link to this record
 

 
Author Alekhin, S. et al; Hernandez, P. url  doi
openurl 
  Title A facility to search for hidden particles at the CERN SPS: the SHiP physics case Type Journal Article
  Year 2016 Publication Reports on Progress in Physics Abbreviated Journal (down) Rep. Prog. Phys.  
  Volume 79 Issue 12 Pages 124201 - 137pp  
  Keywords beyond the standard model physics; intensity frontier experiment; hidden sectors; heavy neutral leptons; dark photons  
  Abstract This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 μand to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.  
  Address [Alekhin, Sergey] DESY, Platanenallee 6, D-15738 Zeuthen, Germany, Email: oleg.ruchayskiy@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387025400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2852  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva