|   | 
Details
   web
Records
Author Chen, P.; Ding, G.J.; Rojas, A.D.; Vaquera-Araujo, C.A.; Valle, J.W.F.
Title Warped flavor symmetry predictions for neutrino physics Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 01 Issue 1 Pages 007 - 27pp
Keywords Quark Masses and SM Parameters; Neutrino Physics; Discrete and Finite Symmetries
Abstract A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Delta(27) flavor symmetry broken on the branes by flavon fields.The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.
Address [Chen, Peng; Ding, Gui-Jun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000367831200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2518
Permanent link to this record
 

 
Author Reig, M.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Three-family left-right symmetry with low-scale seesaw mechanism Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 05 Issue 5 Pages 100 - 10pp
Keywords Beyond Standard Model; Guage Symmetry; Neutrino Physics
Abstract We suggest a new left-right symmetric model implementing a low-scale see-saw mechanism in which quantum consistency requires three families of fermions. The symmetry breaking route to the Standard Model determines the profile of the “next” expected new physics, characterized either by the simplest left-right gauge symmetry or by the 3-3-1 scenario. The resulting Z' gauge bosons can be probed at the LHC and provide a production portal for the right-handed neutrinos. On the other hand, its flavor changing interactions would affect the K, D and B neutral meson systems.
Address [Reig, Mario; Valle, Jose W. F.; Vaquera-Araujo, C. A.] Univ Valencia, AHEP Grp, CSIC, Inst Fis Corpuscular, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mareiglo@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000402841900003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3168
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Predictive Pati-Salam theory of fermion masses and mixing Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 07 Issue 7 Pages 118 - 25pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We propose a Pati-Salam extension of the standard model incorporating a flavor symmetry based on the Delta (27) group. The theory realizes a realistic Froggatt-Nielsen picture of quark mixing and a predictive pattern of neutrino oscillations. We find that, for normal neutrino mass ordering, the atmospheric angle must lie in the higher octant, CP must be violated in oscillations, and there is a lower bound for the 0 nu beta beta decay rate. For the case of inverted mass ordering, we find that the lower atmospheric octant is preferred, and that CP can be conserved in oscillations. Neutrino masses arise from a low-scale seesaw mechanism, whose messengers can be produced by a Z' portal at the LHC.
Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000406883100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3237
Permanent link to this record
 

 
Author Dong, P.V.; Huong, D.T.; Queiroz, F.S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title The dark side of flipped trinification Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 04 Issue 4 Pages 143 - 31pp
Keywords Cosmology of Theories beyond the SM; Discrete Symmetries; Gauge Symmetry
Abstract We propose a model which unifies the Left-Right symmetry with the SU(3)L gauge group, called flipped trinification, and based on the SU(3)(C)circle times SU(3)(L)circle times SU(3)(R)circle times U(1)(x) gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W-p = ( 1)(3(B-L)+/- 2s), and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.
Address [Dong, P. V.; Huong, D. T.] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam, Email: pvdong@iop.vast.ac.vn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000432044000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3576
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Neutrino predictions from a left-right symmetric flavored extension of the standard model Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal (up) J. High Energy Phys.
Volume 02 Issue 2 Pages 065 - 24pp
Keywords Beyond Standard Model; Discrete Symmetries; Neutrino Physics; Quark Masses and SM Parameters
Abstract We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.
Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000459168900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3917
Permanent link to this record