|   | 
Details
   web
Records
Author Araujo Filho, A.A.; Hassanabadi, H.; Heidari, N.; Kriz, J.; Zare, S.
Title Gravitational traces of bumblebee gravity in metric-affine formalism Type Journal Article
Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal (up) Class. Quantum Gravity
Volume 41 Issue 5 Pages 055003 - 21pp
Keywords bumblebee gravity; metric affine formalism; shadows
Abstract This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.
Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor, Ctr MIxto Univ Valencia, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001152994800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5925
Permanent link to this record
 

 
Author Heidari, N.; Hassanabadi, H.; Araujo Filho, A.A.; Kriz, J.
Title Exploring non-commutativity as a perturbation in the Schwarzschild black hole: quasinormal modes, scattering, and shadows Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal (up) Eur. Phys. J. C
Volume 84 Issue 6 Pages 566 - 11pp
Keywords
Abstract In this work, by a novel approach to studying the scattering of a Schwarzschild black hole, the non-commutativity is introduced as perturbation. We begin by reformulating the Klein-Gordon equation for the scalar field in a new form that takes into account the deformed non-commutative spacetime. Using this formulation, an effective potential for the scattering process is derived. To calculate the quasinormal modes, we employ the WKB method and also utilize fitting techniques to investigate the impact of non-commutativity on the scalar quasinormal modes. We thoroughly analyze the results obtained from these different methods. Moreover, the greybody factor and absorption cross section are investigated. Additionally, we explore the behavior of null geodesics in the presence of non-commutativity. Specifically, we examine the photonic, and shadow radius as well as the light trajectories for different non-commutative parameters. Therefore, by addressing these various aspects, we aim to provide a comprehensive understanding of the influence of non-commutativity on the scattering of a Schwarzschild-like black hole and its implications for the behavior of scalar fields and light trajectories.
Address [Heidari, N.; Hassanabadi, H.] Shahrood Univ Technol, Fac Phys, Shahrood, Iran, Email: heidari.n@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001239390500007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6191
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Hassanabadi, H.; Reis, J.A.A.S.; Lisboa-Santos, L.
Title Fermions with electric dipole moment in curved space-time Type Journal Article
Year 2024 Publication International Journal of Modern Physics A Abbreviated Journal (up) Int. J. Mod. Phys. A
Volume 39 Issue 19n20 Pages 2450078 - 16pp
Keywords Fermions; curved spacetime; electric dipole momentum; thermodynamics
Abstract This paper explores the relativistic behavior of spin-half particles possessing an Electric Dipole Moment (EDM) in a curved space-time background induced by a spiral dislocation. A thorough review of the mathematical formulation of the Dirac spinor in the framework of quantum field theory sets the foundation for our investigation. By deriving the action that governs the interaction between the spinor field, the background space-time, and an external electric field, we establish a framework to study the dynamics of the system. Solving the resulting wave equation reveals a set of coupled equations for the radial components of the Dirac spinor, which give rise to a modified energy spectrum attributed to the EDM. To validate our findings, we apply them to the geometric phase and thermodynamics.
Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:001302405200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6243
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Furtado, J.; Hassanabadi, H.; Reis, J.A.A.S.
Title Thermal analysis of photon-like particles in rainbow gravity Type Journal Article
Year 2023 Publication Physics of the Dark Universe Abbreviated Journal (up) Phys. Dark Universe
Volume 42 Issue Pages 101310 - 8pp
Keywords Rainbow gravity; Thermodynamics; Bounds
Abstract This work is devoted to study the thermodynamic behavior of photon-like particles within the rainbow gravity formalism. To to do this, we chose two particular ansatzs to accomplish our calculations. First, we consider a dispersion relation which avoids UV divergences, getting a positive effective cosmological constant. We provide numerical analysis for the thermodynamic functions of the system and bounds are estimated. Furthermore, a phase transition is also expected for this model. Second, we consider a dispersion relation employed in the context of Gamma Ray Bursts. Remarkably, for this latter case, the thermodynamic properties are calculated in an analytical manner and they turn out to depend on the harmonic series Hn, gamma & UGamma; (z), polygamma & psi;n(z) and zeta Riemann functions & zeta;(z).
Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor & IFIC, Ctr Mixto Univ Valencia, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001062674000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5667
Permanent link to this record
 

 
Author Heidari, N.; Hassanabadi, H.; Araujo Filho, A.A.; Kriz, J.; Zare, S.; Porfirio, P.J.
Title Gravitational signatures of a non-commutative stable black hole Type Journal Article
Year 2024 Publication Physics of the Dark Universe Abbreviated Journal (up) Phys. Dark Universe
Volume 43 Issue Pages 101382 - 13pp
Keywords Non-commutativity; Black hole; Shadows; Geodesics
Abstract This work investigates several key aspects of a non-commutative theory with mass deformation. We calculate thermodynamic properties of the system and compare our results with recent literature. We examine the quasinormal modes of massless scalar perturbations using two approaches: the WKB approximation and the Poschl-Teller fitting method. Our results indicate that stronger non-commutative parameters lead to slower damping oscillations of gravitational waves and higher partial absorption cross sections. Furthermore, we study the geodesics of massless and massive particles, highlighting that the non-commutative parameter (R) significantly impacts the paths of light and event horizons. Also, we calculate the shadows, which show that larger values of (R) correspond to larger shadow radii, and provide some constraints on (R) applying the observation of Sgr A* from the Event Horizon Telescope. Finally, we explore the deflection angle in this context.
Address [Heidari, N.; Hassanabadi, H.] Shahrood Univ Technol, Fac Phys, Shahrood, Iran, Email: heidari.n@gmail.com;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001126934800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5857
Permanent link to this record