|   | 
Details
   web
Records
Author Caputo, A.; Liu, H.W.; Mishra-Sharma, S.; Ruderman, J.T.
Title Dark Photon Oscillations in Our Inhomogeneous Universe Type Journal Article
Year 2020 Publication Physical Review Letters Abbreviated Journal (down) Phys. Rev. Lett.
Volume 125 Issue 22 Pages 221303 - 8pp
Keywords
Abstract A dark photon kinetically mixing with the ordinary photon represents one of the simplest viable extensions to the standard model, and would induce oscillations with observable imprints on cosmology. Oscillations are resonantly enhanced if the dark photon mass equals the ordinary photon plasma mass, which tracks the free electron number density. Previous studies have assumed a homogeneous Universe; in this Letter, we introduce for the first time an analytic formalism for treating resonant oscillations in the presence of inhomogeneities of the photon plasma mass. We apply our formalism to determine constraints from cosmic microwave background photons oscillating into dark photons, and from heating of the primordial plasma due to dark photon dark matter converting into low-energy photons. Including the effect of inhomogeneities demonstrates that prior homogeneous constraints are not conservative, and simultaneously extends current experimental limits into a vast new parameter space.
Address [Caputo, Andrea] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000591812900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4641
Permanent link to this record
 

 
Author Toubiana, A.; Sberna, L.; Caputo, A.; Cusin, G.; Marsat, S.; Jani, K.; Babak, S.; Barausse, E.; Caprini, C.; Pani, P.; Sesana, A.; Tamanini, N.
Title Detectable Environmental Effects in GW190521-like Black-Hole Binaries with LISA Type Journal Article
Year 2021 Publication Physical Review Letters Abbreviated Journal (down) Phys. Rev. Lett.
Volume 126 Issue 10 Pages 101105 - 6pp
Keywords
Abstract GW190521 is the compact binary with the largest masses observed to date, with at least one black hole in the pair-instability gap. This event has also been claimed to be associated with an optical flare observed by the Zwicky Transient Facility in an active galactic nucleus (AGN), possibly due to the postmerger motion of the merger remnant in the AGN gaseous disk. The Laser Interferometer Space Antenna (LISA) may detect up to ten such gas-rich black-hole binaries months to years before their detection by Laser Interferometer Gravitational Wave Observatory or Virgo-like interferometers, localizing them in the sky within approximate to 1 degrees(2). LISA will also measure directly deviations from purely vacuum and stationary waveforms arising from gas accretion, dynamical friction, and orbital motion around the AGN's massive black hole (acceleration, strong lensing, and Doppler modulation). LISA will therefore be crucial to enable us to point electromagnetic telescopes ahead of time toward this novel class of gas-rich sources, to gain direct insight on their physics, and to disentangle environmental effects from corrections to general relativity that may also appear in the waveforms at low frequencies.
Address [Toubiana, Alexandre; Marsat, Sylvain; Babak, Stanislav; Caprini, Chiara] Univ Paris, CNRS, AstroParticule & Cosmol, APC, F-75013 Paris, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000652824700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4846
Permanent link to this record
 

 
Author Caputo, A.; Liu, H.W.; Mishra-Sharma, S.; Pospelov, M.; Ruderman, J.T.; Urbano, A.
Title Edges and Endpoints in 21-cm Observations from Resonant Photon Production Type Journal Article
Year 2021 Publication Physical Review Letters Abbreviated Journal (down) Phys. Rev. Lett.
Volume 127 Issue 1 Pages 011102 - 7pp
Keywords
Abstract We introduce a novel class of signatures-spectral edges and end points-in 21-cm measurements resulting from interactions between the standard and dark sectors. Within the context of a kinetically mixed dark photon, we demonstrate how resonant dark photon-to-photon conversions can imprint distinctive spectral features in the observed 21-cm brightness temperature, with implications for current, upcoming, and proposed experiments targeting the cosmic dawn and the dark ages. These signatures open up a qualitatively new way to look for physics beyond the Standard Model using 21-cm observations.
Address [Caputo, Andrea] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000669052600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4885
Permanent link to this record
 

 
Author Caputo, A.; Pena-Garay, C.; Witte, S.J.
Title Looking for axion dark matter in dwarf spheroidal galaxies Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D
Volume 98 Issue 8 Pages 083024 - 6pp
Keywords
Abstract We study the extent to which the decay of cold dark matter axions can be probed with forthcoming radio telescopes such as the Square Kilometer Array (SKA). In particular, we focus on signals arising from dwarf spheroidal galaxies, where astrophysical uncertainties are reduced and the expected magnetic field strengths are such that signals arising from axion decay may dominate over axion-photon conversion in a magnetic field. We show that with similar to 100 hr of observing time, SKA could improve current sensitivity by 2-3 orders of magnitude-potentially obtaining sufficient sensitivity to begin probing the decay of cold dark matter axions.
Address [Caputo, Andrea; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000448458600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3788
Permanent link to this record
 

 
Author Caputo, A.; Sberna, L.; Frias, M.; Blas, D.; Pani, P.; Shao, L.J.; Yan, W.M.
Title Constraints on millicharged dark matter and axionlike particles from timing of radio waves Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal (down) Phys. Rev. D
Volume 100 Issue 6 Pages 063515 - 7pp
Keywords
Abstract We derive constraints on millicharged dark matter and axionlike particles using pulsar timing and fast radio burst observations. For dark matter particles of charge epsilon e, the constraint from time of arrival (TOA) of waves is epsilon/m(milli) less than or similar to 10(-8) eV(-1), for masses m(milli) greater than or similar to 10(-6) eV. For axionlike particles, the polarization of the signals from pulsars yields a bound in the axial coupling g/ m(a) less than or similar to 10(-13) Gev(-1)/(10(-22) eV),for m(a) less than or similar to 10(-19) eV. Both bounds scale as (rho/rho(dm))(1/2 )for fractions of the total dark matter energy density rho(dm). We make a precise study of these bounds using TOA from several pulsars, FRB 121102, and polarization measurements of PSR J0437 – 4715. Our results rule out a new region of the parameter space for these dark matter models.
Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: lsberna@perimeterinstitute.ca
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000486646600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4147
Permanent link to this record