|   | 
Details
   web
Records
Author Bernabeu, J.
Title Discrete Symmetries CP,T,CPT Type Journal Article
Year 2016 Publication Acta Physica Polonica B Abbreviated Journal (up) Acta Phys. Pol. B
Volume 47 Issue 2 Pages 417-424
Keywords
Abstract The role of symmetry breaking mechanisms to search for new physics is of highest importance. We discuss the status and prospects of the discrete symmetries CP, T, CPT looking for their separate violation in LHC experiments and meson factories.
Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46003 Valencia, Spain, Email: jose.bernabeu@uv.es
Corporate Author Thesis
Publisher Wydawnictwo Uniwersytetu Jagiellonskiego Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4254 ISBN Medium
Area Expedition Conference
Notes WOS:000373493700022 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2628
Permanent link to this record
 

 
Author Bernabeu, J.; Martinez-Vidal, F.
Title Time-Reversal Violation Type
Year 2015 Publication Annual Review of Nuclear and Particle Science Abbreviated Journal (up) Annu. Rev. Nucl. Part. Sci.
Volume 65 Issue Pages 403-427
Keywords time reversal; CP violation; T-odd products; electric dipole moments; B mesons; K mesons; EPR entanglement
Abstract The violation of CP symmetry between matter and antimatter in the neutral K and B meson systems is well established, with a high degree of consistency between all available experimental measurements and with the Standard Model of particle physics. On the basis of the up-to-now-unbroken CPT symmetry, the violation of CP symmetry strongly suggests that the behavior of these particles under weak interactions must also be asymmetric under time reversal T. Many searches for T violation have been performed and proposed using different observables and experimental approaches. These include T-odd observables, such as triple products in weak decays, and genuine observables, such as permanent electric dipole moments of nondegenerate stationary states and the breaking of the reciprocity relation. We discuss the conceptual basis of the required exchange of initial and final states with unstable particles, using quantum entanglement and the decay as a filtering measurement, for the case of neutral B and K mesons. Using this method, the BaBar experiment at SLAC has clearly observed T violation in B mesons.
Address [Bernabeu, Jose; Martinez-Vidal, Fernando] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Annual Reviews Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-8998 ISBN Medium
Area Expedition Conference
Notes WOS:000363473100017 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2430
Permanent link to this record
 

 
Author Bernabeu, J.; Sabulsky, D.O.; Sanchez, F.; Segarra, A.
Title Neutrino mass and nature through its mediation in atomic clock interference Type Journal Article
Year 2024 Publication AVS Quantum Science Abbreviated Journal (up) AVS Quantum Sci.
Volume 6 Issue 1 Pages 014410 - 8pp
Keywords
Abstract The absolute mass of neutrinos and their nature are presently unknown. Aggregate matter has a coherent weak charge leading to a repulsive interaction mediated by a neutrino pair. The virtual neutrinos are non-relativistic at micron distances, giving a distinct behavior for Dirac versus Majorana mass terms. This effective potential allows for the disentanglement of the Dirac or Majorana nature of the neutrino via magnitude and distance dependence. We propose an experiment to search for this potential based on the concept that the density-dependent interaction of an atomic probe with a material source in one arm of an atomic clock interferometer generates a differential phase. The appropriate geometry of the device is selected using the saturation of the weak potential as a guide. The proposed experiment has the added benefit of being sensitive to gravity at micron distances. A strategy to suppress the competing Casimir-Polder interaction, depending on the electronic structure of the material source, as well as a way to compensate the gravitational interaction in the two arms of the interferometer is discussed.
Address [Bernabeu, Jose; Segarra, Alejandro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: jose.bernabeu@uv.es
Corporate Author Thesis
Publisher AIP Publishing Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001186930100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6118
Permanent link to this record
 

 
Author El-Neaj, Y.A. et al; Bernabeu, J.
Title AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space Type Journal Article
Year 2020 Publication EPJ Quantum Technology Abbreviated Journal (up) EPJ Quantum Technol.
Volume 7 Issue 1 Pages 6 - 27pp
Keywords
Abstract We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126
Address [El-Neaj, Yousef Abou] Harvard Univ, Phys Dept, Cambridge, MA 02138 USA, Email: o.buchmueller@imperial.ac.uk
Corporate Author Thesis
Publisher Springeropen Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2662-4400 ISBN Medium
Area Expedition Conference
Notes WOS:000519468200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4325
Permanent link to this record
 

 
Author Alonso, I. et al; Bernabeu, J.
Title Cold atoms in space: community workshop summary and proposed road-map Type Journal Article
Year 2022 Publication EPJ Quantum Technology Abbreviated Journal (up) EPJ Quantum Technol.
Volume 9 Issue 1 Pages 30 - 55pp
Keywords
Abstract We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.
Address [Alonso, Ivan] Univ Balearic Isl, Higher Polytech Sch, Valldemossa Rd, Palma De Mallorca 07122, Spain, Email: Oliver.Buchmueller@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2662-4400 ISBN Medium
Area Expedition Conference
Notes WOS:000885839700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5424
Permanent link to this record