PT Journal AU MiniBooNE Collaboration (Aguilar-Arevalo, AAea Sorel, M TI Measurement of the neutrino component of an antineutrino beam observed by a nonmagnetized detector SO Physical Review D JI Phys. Rev. D PY 2011 BP 072005 EP 14pp VL 84 IS 7 DI 10.1103/PhysRevD.84.072005 LA English AB Two methods are employed to measure the neutrino flux of the antineutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high-purity nu(mu)-induced charged-current single pi(+) (CC1 pi(+)) sample while the second exploits the difference between the angular distributions of muons created in nu(mu) and nu(mu) charged-current quasielastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the predominately antineutrino beam is overestimated-the CC1 pi(+) analysis indicates the predicted nu(mu) flux should be scaled by 0: 76 +/- 0: 11, while the CCQE angular fit yields 0: 65 +/- 0: 23. The energy spectrum of the flux prediction is checked by repeating the analyses in bins of reconstructed neutrino energy, and the results show that the spectral shape is well-modeled. These analyses are a demonstration of techniques for measuring the neutrino contamination of antineutrino beams observed by future nonmagnetized detectors. ER