PT Journal AU Xu, ZYea Algora, A Morales, AI TI 133In: A Rosetta Stone for Decays of r-Process Nuclei SO Physical Review Letters JI Phys. Rev. Lett. PY 2023 BP 022501 EP 6pp VL 131 IS 2 DI 10.1103/PhysRevLett.131.022501 LA English AB The beta decays from both the ground state and a long-lived isomer of In-133 were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to beta,gamma, and neutron spectroscopy, the comparative partial half-lives (log ft) have been measured for all their dominant beta-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their beta decays selectively populate only a few isolated neutron unbound states in Sn-133. Precise energy and branching-ratio measurements of those resonances allow us to benchmark beta-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the beta decay of neutron-rich nuclei southeast of Sn-132 and will serve as a guide for future theoretical development aiming to describe accurately the key beta decays in the rapid-neutron capture (r-) process. ER