TY - JOUR AU - Wieduwilt, P. AU - Paschen, B. AU - Schreeck, H. AU - Schwenker, B. AU - Soltau, J. AU - Ahlburg, P. AU - Dingfelder, J. AU - Frey, A. AU - Gomis, P. AU - Lutticke, F. AU - Marinas, C. PY - 2021 DA - 2021// TI - Performance of production modules of the Belle II pixel detector in a high-energy particle beam T2 - Nucl. Instrum. Methods Phys. Res. A JO - Nuclear Instruments & Methods in Physics Research A SP - 164978 - 15pp VL - 991 PB - Elsevier KW - DEPFET KW - DESY testbeam KW - Pixel detector KW - Belle II KW - Vertex detector AB - The Belle II experiment at the Super B factory SuperKEKB, an asymmetric e(+) e(-) collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the gamma (4S) resonance of m(gamma(4S)) = 10.58 GeV. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only 75 μm. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II. SN - 0168-9002 UR - https://arxiv.org/abs/2101.10107 UR - https://doi.org/10.1016/j.nima.2020.164978 DO - 10.1016/j.nima.2020.164978 LA - English N1 - WOS:000686054900010 ID - Wieduwilt_etal2021 ER -