@Article{ATLASCollaborationAaboud_etal2021, author="ATLAS Collaboration (Aaboud, M. et al and Alvarez Piqueras, D. and Aparisi Pozo, J. A. and Bailey, A. J. and Cabrera Urban, S. and Castillo, F. L. and Castillo Gimenez, V. and Cerda Alberich, L. and Costa, M. J. and Escobar, C. and Estrada Pastor, O. and Ferrer, A. and Fiorini, L. and Fullana Torregrosa, E. and Fuster, J. and Garcia, C. and Garcia Navarro, J. E. and Gonzalez de la Hoz, S. and Gonzalvo Rodriguez, G. R. and Guerrero Rojas, J. G. R. and Higon-Rodriguez, E. and Jimenez Pena, J. and Lacasta, C. and Lozano Bahilo, J. J. and Madaffari, D. and Mamuzic, J. and Marti-Garcia, S. and Melini, D. and Mi{\~{n}}ano, M. and Mitsou, V. A. and Rodriguez Bosca, S. and Rodriguez Rodriguez, D. and Ruiz-Martinez, A. and Salt, J. and Santra, A. and Soldevila, U. and Sanchez, J. and Valero, A. and Valls Ferrer, J. A. and Vos, M.", title="Measurement of the jet mass in high transverse momentum Z(-> b(b)over-bar)gamma production at root s=13 TeV using the ATLAS detector", journal="Physics Letters B", year="2021", publisher="Elsevier", volume="812", pages="135991--23pp", abstract="The integrated fiducial cross-section and unfolded differential jet mass spectrum of high transverse momentum Z -> b (b) over bar decays are measured in Z gamma events in proton-proton collisions at root s = 13 TeV. The data analysed were collected between 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb(-1). Photons are required to have a transverse momentum p(T) > 175 GeV. The Z -> b (b) over bar decay is reconstructed using a jet with p(T) > 200 GeV, found with the anti-k(t) R = 1.0 jet algorithm, and groomed to remove soft and wide-angle radiation and to mitigate contributions from the underlying event and additional proton-proton collisions. Two different but related measurements are performed using two jet grooming definitions for reconstructing the Z -> b (b) over bar decay: trimming and soft drop. These algorithms differ in their experimental and phenomenological implications regarding jet mass reconstruction and theoretical precision. To identify Zbosons, b-tagged R = 0.2 track-jets matched to the groomed large-R calorimeter jet are used as a proxy for the b-quarks. The signal yield is determined from fits of the data-driven background templates to the different jet mass distributions for the two grooming methods. Integrated fiducial cross-sections and unfolded jet mass spectra for each grooming method are compared with leading-order theoretical predictions. The results are found to be in good agreement with Standard Model expectations within the current statistical and systematic uncertainties.", optnote="WOS:000608167600013", optnote="exported from refbase (https://references.ific.uv.es/refbase/show.php?record=4691), last updated on Thu, 11 Feb 2021 11:50:39 +0000", issn="0370-2693", doi="10.1016/j.physletb.2020.135991", opturl="https://arxiv.org/abs/1907.07093", opturl="https://doi.org/10.1016/j.physletb.2020.135991", language="English" }