@Article{ATLASCollaborationAad_etal2020, author="ATLAS Collaboration (Aad, G. et al and Aparisi Pozo, J. A. and Bailey, A. J. and Cabrera Urban, S. and Castillo, F. L. and Castillo Gimenez, V. and Cerda Alberich, L. and Costa, M. J. and Escobar, C. and Estrada Pastor, O. and Ferrer, A. and Fiorini, L. and Fullana Torregrosa, E. and Fuster, J. and Garcia, C. and Garcia Navarro, J. E. and Gonzalez de la Hoz, S. and Gonzalvo Rodriguez, G. R. and Guerrero Rojas, J. G. R. and Higon-Rodriguez, E. and Lacasta, C. and Lozano Bahilo, J. J. and Madaffari, D. and Mamuzic, J. and Marti-Garcia, S. and Martinez Agullo, P. and Mi{\~{n}}ano, M. and Mitsou, V. A. and Moreno Llacer, M. and Poveda, J. and Rodriguez Bosca, S. and Ruiz-Martinez, A. and Salt, J. and Santra, A. and Sayago Galvan, I. and Soldevila, U. and Sanchez, J. and Valero, A. and Valls Ferrer, J. A. and Vos, M.", title="Dijet Resonance Search with Weak Supervision Using root S=13 TeV pp Collisions in the ATLAS Detector", journal="Physical Review Letters", year="2020", publisher="Amer Physical Soc", volume="125", number="13", pages="131801--23pp", abstract="This Letter describes a search for narrowly resonant new physics using a machine -learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A -> BC, for m(A) similar to O(TeV), m(B), m(C) similar to O(100 GeV) and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 root s = 13 TeV pp collision dataset of 139 fb(-1) recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV, Cross-section limits for narrow -width A, B, and C particles vary with m(A), m(B), and m(C). For example, when m(A) = 3 TeV and m(B) greater than or similar to 200 GeV, a production cross section between 1 and 5 fb is excluded at 95{\%} confidence level, depending on m(C). For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model bosons.", optnote="WOS:000571399800004", optnote="exported from refbase (https://references.ific.uv.es/refbase/show.php?record=4538), last updated on Wed, 07 Oct 2020 09:09:26 +0000", issn="0031-9007", doi="10.1103/PhysRevLett.125.131801", opturl="https://arxiv.org/abs/2005.02983", opturl="https://doi.org/10.1103/PhysRevLett.125.131801", language="English" }