TY - JOUR AU - Alarcon, J. M. AU - Hiller Blin, A. N. AU - Vicente Vacas, M. J. AU - Weiss, C. PY - 2017 DA - 2017// TI - Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis T2 - Nucl. Phys. A JO - Nuclear Physics A SP - 18 EP - 54 VL - 964 PB - Elsevier Science Bv KW - Electromagnetic form factors KW - Chiral lagrangians KW - Dispersion relations KW - Hyperons KW - Charge distribution AB - The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M-pi(-1)) using methods of relativistic chiral effective field theory (chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M-pi(2) are calculated using relativistic chi EFT including octet and decuplet baryons. The chi EFT calculations are extended into the rho meson mass region using an N / D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions. SN - 0375-9474 UR - http://arxiv.org/abs/1703.04534 UR - https://doi.org/10.1016/j.nuclphysa.2017.05.002 DO - 10.1016/j.nuclphysa.2017.05.002 LA - English N1 - WOS:000404199900002 ID - Alarcon_etal2017 ER -