TY - JOUR AU - Aceti, F. AU - Liang, W. H. AU - Oset, E. AU - Wu, J. J. AU - Zou, B. S. PY - 2012 DA - 2012// TI - Isospin breaking and f(0)(980)-a(0)(980) mixing in the eta(1405) -> pi(0)f(0)(980) reaction T2 - Phys. Rev. D JO - Physical Review D SP - 114007 EP - 11pp VL - 86 IS - 11 PB - Amer Physical Soc AB - We make a theoretical study of the eta(1405) -> pi(0)f(0)(980) and eta(1405) -> pi(0)a(0)(980) reactions with an aim to determine the isospin violation and the mixing of the f(0)(980) and a(0)(980) resonances. We make use of the chiral unitary approach where these two resonances appear as composite states of two mesons, dynamically generated by the meson-meson interaction provided by chiral Lagrangians. We obtain a very narrow shape for the f(0)(980) production in agreement with a BES experiment. As to the amount of isospin violation, or f(0)(980) and a(0)(980) mixing, assuming constant vertices for the primary eta(1405) -> pi K-0 (K) over bar and eta(1405) -> pi(0)pi(0)eta production, we find results which are much smaller than found in the recent experimental BES paper, but consistent with results found in two other related BES experiments. We have tried to understand this anomaly by assuming an I = 1 mixture in the eta(1405) wave function, but this leads to a much bigger width of the f(0)(980) mass distribution than observed experimentally. The problem is solved by using the primary production driven by eta' -> K*(K) over bar followed by K* -> K pi, which induces an extra singularity in the loop functions needed to produce the f(0)(980) and a(0)(980) resonances. Improving upon earlier work along the same lines, and using the chiral unitary approach, we can now predict absolute values for the ratio Gamma(pi(0), pi(+)pi(-))/Gamma(pi(0), pi(0)eta) which are in fair agreement with experiment. We also show that the same results hold if we had the eta(1475) resonance or a mixture of these two states, as seems to be the case in the BES experiment. SN - 1550-7998 UR - http://arxiv.org/abs/arXiv:1209.6507 UR - https://doi.org/10.1103/PhysRevD.86.114007 DO - 10.1103/PhysRevD.86.114007 LA - English N1 - WOS:000311913000003 ID - Aceti_etal2012 ER -