PT Journal AU Fallot, M Cormon, S Estienne, M Algora, A Bui, VM Cucoanes, A Elnimr, M Giot, L Jordan, D Martino, J Onillon, A Porta, A Pronost, G Remoto, A Tain, JL Yermia, F Zakari-Issoufou, AA TI New Antineutrino Energy Spectra Predictions from the Summation of Beta Decay Branches of the Fission Products SO Physical Review Letters JI Phys. Rev. Lett. PY 2012 BP 202504 EP 5pp VL 109 IS 20 DI 10.1103/PhysRevLett.109.202504 LA English AB In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the Tc-102;104;105;106;107, Mo-105, and Nb-101 nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes U-235,U-238 and Pu-239,Pu-241. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the gamma component of the decay heat of Pu-239, solving a large part of the gamma discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of U-235, Pu-239,Pu-241, and, in particular, U-238 for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra. ER