TY - JOUR AU - Belver, D. AU - Cabanelas, P. AU - Castro, E. AU - Garzon, J. A. AU - Gil, A. AU - Gonzalez-Diaz, D. AU - Koenig, W. AU - Traxler, M. PY - 2010 DA - 2010// TI - Performance of the Low-Jitter High-Gain/Bandwidth Front-End Electronics of the HADES tRPC Wall T2 - IEEE Trans. Nucl. Sci. JO - IEEE Transactions on Nuclear Science SP - 2848 EP - 2856 VL - 57 IS - 5 PB - Ieee-Inst Electrical Electronics Engineers Inc KW - Charge to width algorithm KW - fast amplifying and digitizing electronics KW - front-end electronics KW - HADES KW - time of flight KW - timing RPC AB - A front-end electronics (FEE) chain for accurate time measurements has been developed for the new Resistive Plate Chamber (RPC)-based Time-of-Flight (TOF) wall of the High Acceptance Di-Electron Spectrometer (HADES). The wall covers an area of around 8 m(2) divided in 6 sectors. In total, 1122 4-gap timing RPC cells are read-out by 2244 time and charge sensitive channels. The FEE chain consists of 2 custom-made boards: a 4-channel Daughter BOard(DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a dual high-speed discriminator. The time and charge information are encoded, respectively, in the leading edge and the width of an LVDS signal. Each MBO houses up to 8 DBOs providing them regulated voltage supply, threshold values via DACs, test signals and, additionally, routing out a signal proportional to the channel multiplicity needed for a 1st level trigger decision. The MBO delivers LVDS signals to a multi-purpose Trigger Readout Board (TRB) for data acquisition. The FEE allows achieving a system resolution around 75 ps fulfilling comfortably the requirements of the HADES upgrade [1]. The commissioning of the whole RPC wall is finished and the 6 sectors are already mounted in their final position in the HADES spectrometer and ready to take data during the beam-times foreseen for 2010. SN - 0018-9499 UR - https://doi.org/10.1109/TNS.2010.2056928 DO - 10.1109/TNS.2010.2056928 LA - English N1 - ISI:000283440400007 ID - Belver_etal2010 ER -