PT Journal AU ATLAS Collaboration (Aad, Gea Amos, KR Aparisi Pozo, JA Bailey, AJ Bouchhar, N Cabrera Urban, S Cantero, J Cardillo, F Castillo Gimenez, V Chitishvili, M Costa, MJ Didenko Escobar, C Fiorini, L Fullana Torregrosa, E Fuster, J Garcia, C Garcia Navarro, JE Gomez Delegido, AJ Gonzalez de la Hoz, S Gonzalvo Rodriguez, GR Guerrero Rojas, JGR Lacasta, C Marti-Garcia, S Martinez Agullo, P Miralles Lopez, M Mitsou, VA Monsonis Romero, L Moreno Llacer, M Munoz Perez, D Navarro-Gonzalez, J Poveda, J Prades IbaƱez, A Rubio Jimenez, A Ruiz-Martinez, A Sabatini, P Salt, J Sanchez Sebastian, V Sayago Galvan, I Senthilkumar, V Soldevila, U Sanchez, J Torro Pastor, E Valero, A Valiente Moreno, E Valls Ferrer, JA Varriale, L Villaplana Perez, M Vos, M TI New techniques for jet calibration with the ATLAS detector SO European Physical Journal C JI Eur. Phys. J. C PY 2023 BP 761 - 41pp VL 83 IS 8 DI 10.1140/epjc/s10052-023-11837-9 LA English AB A determination of the jet energy scale is presented using proton-proton collision data with a centre-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 140 fb(-1) collected using the ATLAS detector at the LHC. Jets are reconstructed using the ATLAS particle-flow method that combines charged-particle tracks and topo-clusters formed from energy deposits in the calorimeter cells. The anti-kt jet algorithm with radius parameter R = 0.4 is used to define the jet. Novel jet energy scale calibration strategies developed for the LHC Run 2 are reported that lay the foundation for the jet calibration in Run 3. Jets are calibrated with a series of simulation-based corrections, including state-of-the-art techniques in jet calibration such as machine learning methods and novel in situ calibrations to achieve better performance than the baseline calibration derived using up to 81 fb(-1) of Run 2 data. The performance of these new techniques is then examined in the in situ measurements by exploiting the transverse momentum balance between a jet and a reference object. The b-quark jet energy scale using particle flow jets is measured for the first time with around 1% precision using gamma+jet events. ER