PT Journal AU ATLAS Collaboration (Aad, Gea Amos, KR Aparisi Pozo, JA Bailey, AJ Cabrera Urban, S Cardillo, F Castillo Gimenez, V Costa, MJ Didenko Escobar, C Estrada Pastor, O Fiorini, L Fullana Torregrosa, E Fuster, J Garcia, C Garcia Navarro, JE Gonzalez de la Hoz, S Gonzalvo Rodriguez, GR Guerrero Rojas, JGR Higon-Rodriguez, E Lacasta, C Lozano Bahilo, JJ Mamuzic, J Marti-Garcia, S Martinez Agullo, P Miralles Lopez, M Mitsou, VA Monsonis Romero, L Moreno Llacer, M Navarro-Gonzalez, J Poveda, J Prades Ibañez, A Ruiz-Martinez, A Sabatini, P Salt, J Sanchez Sebastian, V Sayago Galvan, I Senthilkumar, V Soldevila, U Sanchez, J Torro Pastor, E Valero, A Valls Ferrer, JA Villaplana Perez, M Vos, M TI Search for high-mass Wγ and Zγ resonances using hadronic W/Z boson decays from 139 fb-1 of pp collisions at √s=13 TeV with the ATLAS detector SO Journal of High Energy Physics JI J. High Energy Phys. PY 2023 BP 125 EP 47pp VL 07 IS 7 DI 10.1007/JHEP07(2023)125 LA English DE Hadron-Hadron Scattering AB A search for high-mass charged and neutral bosons decaying to W gamma and Z gamma final states is presented in this paper. The analysis uses a data sample of root s = 13TeV proton-proton collisions with an integrated luminosity of 139 fb(-1) collected by the ATLAS detector during LHC Run 2 operation. The sensitivity of the search is determined using models of the production and decay of spin-1 charged bosons and spin-0/2 neutral bosons. The range of resonance masses explored extends from 1.0TeV to 6.8TeV. At these high resonance masses, it is beneficial to target the hadronic decays of the W and Z bosons because of their large branching fractions. The decay products of the high-momentum W/Z bosons are strongly collimated and boosted-boson tagging techniques are employed to improve the sensitivity. No evidence of a signal above the Standard Model backgrounds is observed, and upper limits on the production cross-sections of these bosons times their branching fractions to W gamma and Z gamma are derived for various boson production models. ER