PT Journal AU ATLAS Collaboration (Aad, Gea Alvarez Piqueras, D Aparisi Pozo, JA Bailey, AJ Barranco Navarro, L Cabrera Urban, S Castillo, FL Castillo Gimenez, V Cerda Alberich, L Costa, MJ Escobar, C Estrada Pastor, O Ferrer, A Fiorini, L Fullana Torregrosa, E Fuster, J Garcia, C Garcia Navarro, JE Gonzalez de la Hoz, S Gonzalvo Rodriguez, GR Higon-Rodriguez, E Jimenez Pena, J Lacasta, C Lozano Bahilo, JJ Madaffari, D Mamuzic, J Marti-Garcia, S Melini, D MiƱano, M Mitsou, VA Rodriguez Bosca, S Rodriguez Rodriguez, D Ruiz-Martinez, A Salt, J Santra, A Soldevila, U Sanchez, J Valero, A Valls Ferrer, JA Vos, M TI Transverse momentum and process dependent azimuthal anisotropies in root S-NN=8.16 TeV p plus Pb collisions with the ATLAS detector SO European Physical Journal C JI Eur. Phys. J. C PY 2020 BP 73 - 31pp VL 80 IS 1 DI 10.1140/epjc/s10052-020-7624-4 LA English AB The azimuthal anisotropy of charged particles produced in sNN=8.16TeV p+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 165 nb-1 that was collected in 2016. Azimuthal anisotropy coefficients, elliptic v2 and triangular v3\, extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum (pT) between 0.5 and 50 GeV. The v2 results are also reported as a function of centrality in three different particle pTintervals. The results are reported from minimum-bias events and jet-triggered events, where two jet pT thresholds are used. The anisotropies for particles with pT less than about 2 GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for pT in the range 9-50 GeV are not explained within current theoretical frameworks. In the pTrange 2-9 GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed. ER