PT Journal AU ATLAS Collaboration (Aaboud, Mea Alvarez Piqueras, D Barranco Navarro, L Cabrera Urban, S Castillo Gimenez, V Cerda Alberich, L Costa, MJ Escobar, C Estrada Pastor, O Fernandez Martinez, P Ferrer, A Fiorini, L Fuster, J Garcia, C Garcia Navarro, JE Gonzalez de la Hoz, S Higon-Rodriguez, E Jimenez Pena, J Lacasta, C Madaffari, D Mamuzic, J Marti-Garcia, S Melini, D Mitsou, VA Pedraza Lopez, S Rodriguez Bosca, S Rodriguez Rodriguez, D Romero Adam, E Salt, J Sanchez Martinez, V Soldevila, U Sanchez, J Valero, A Valls Ferrer, JA Vos, M TI Search for electroweak production of supersymmetric particles in final states with two or three leptons at root s=13 Tev with the ATLAS detector SO European Physical Journal C JI Eur. Phys. J. C PY 2018 BP 995 - 36pp VL 78 IS 12 DI 10.1140/epjc/s10052-018-6423-7 LA English AB A search for the electroweak production of charginos, neutralinos and sleptons decaying into final states involving two or three electrons or muons is presented. The analysis is based on 36.1 fb(-1) of root s = 13 TeV protonproton collisions recorded by the ATLAS detector at the Large Hadron Collider. Several scenarios based on simplified models are considered. These include the associated production of the next-to-lightest neutralino and the lightest chargino, followed by their decays into final states with leptons and the lightest neutralino via either sleptons or Standard Model gauge bosons; direct production of chargino pairs, which in turn decay into leptons and the lightest neutralino via intermediate sleptons; and slepton pair production, where each slepton decays directly into the lightest neutralino and a lepton. No significant deviations from the Standard Model expectation are observed and stringent limits at 95% confidence level are placed on the masses of relevant supersymmetric particles in each of these scenarios. For a massless lightest neutralino, masses up to 580 GeV are excluded for the associated production of the next-to-lightest neutralino and the lightest chargino, assuming gauge-boson mediated decays, whereas for slepton-pair production masses up to 500 GeV are excluded assuming three generations of mass-degenerate sleptons. ER