PT Journal AU Kaya, Lea Gadea, A TI Millisecond 23/2(+) isomers in the N=79 isotones Xe-133 and Ba-135 SO Physical Review C JI Phys. Rev. C PY 2018 BP 054312 EP 16pp VL 98 IS 5 DI 10.1103/PhysRevC.98.054312 LA English AB Detailed information on isomeric states in A approximate to 135 nuclei is exploited to shell-model calculations in the region northwest of doubly magic nucleus Sn-132. The N = 79 isotones Xe-133 and Ba-135 are studied after multinucleon transfer in the Xe-136 + Pb-208 reaction employing the high-resolution Advanced GAmma Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy and in a pulsed-beam experiment at the FN tandem accelerator of the University of Cologne Germany utilizing a Be-9 + Te-130 fusion-evaporation reaction at a beam energy of 40 MeV. Isomeric states are identified via delayed gamma-ray spectroscopy. Hitherto tentative excitation energy spin and parity assignments of the 2017-keV J(pi) = 23/2(+) isomer in Xe-133 are confirmed and a half-life of T-1/2 = 8.64(13) ms is measured. The 2388-keV state in Ba-135. is identified as a J(pi) = 23/2(+) isomer with a half-life of 1.06(4) ms. The new results show a smooth onset of isomeric J(pi) = 23/2(+) states along the N = 79 isotones and close a gap in the high-spin systematics towards the recently investigated J(pi) = 23/2(+) isomer in Nd-139. The resulting systematics of M2 reduced transition probabilities is discussed within the of the nuclear shell model. Latest large-scale shell-model calculations employing the SN100PN, GCN50:82, SN100-KTH and a realistic effective interaction reproduce the experimental findings generally well and give insight into the structure of the isomers. ER