PT Journal AU ATLAS Collaboration (Aaboud, Mea Alvarez Piqueras, D Barranco Navarro, L Cabrera Urban, S Castillo Gimenez, V Cerda Alberich, L Costa, MJ Escobar, C Estrada Pastor, O Fernandez Martinez, P Ferrer, A Fiorini, L Fuster, J Garcia, C Garcia Navarro, JE Gonzalez de la Hoz, S Higon-Rodriguez, E Jimenez Pena, J Lacasta, C Madaffari, D Mamuzic, J Marti-Garcia, S Melini, D Mitsou, VA Pedraza Lopez, S Rodriguez Bosca, S Rodriguez Rodriguez, D Romero Adam, E Salt, J Sanchez Martinez, V Soldevila, U Sanchez, J Valero, A Valls Ferrer, JA Vos, M TI Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb(-1) of root s = 13 TeV pp collision data with the ATLAS detector SO Journal of High Energy Physics JI J. High Energy Phys. PY 2017 BP 084 EP 45pp VL 09 IS 9 DI 10.1007/JHEP09(2017)084 LA English DE Hadron-Hadron scattering (experiments); Supersymmetry AB A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (e or mu), or at least three isolated leptons, is presented. The analysis relies on the identification of b-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton-proton collisions at root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb(-1), is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields. ER