%0 Journal Article %T Neutrino interaction classification with a convolutional neural network in the DUNE far detector %A DUNE Collaboration (Abi, B. et al %A Antonova, M. %A Barenboim, G. %A Cervera-Villanueva, A. %A De Romeri, V. %A Fernandez Menendez, P. %A Garcia-Peris, M. A. %A Izmaylov, A. %A Martin-Albo, J. %A Masud, M. %A Mena, O. %A Novella, P. %A Sorel, M. %A Ternes, C. A. %A Tortola, M. %A Valle, J. W. F. %J Physical Review D %D 2020 %V 102 %N 9 %I Amer Physical Soc %@ 2470-0010 %G English %F DUNECollaborationAbi_etal2020 %O WOS:000587596500004 %O exported from refbase (https://references.ific.uv.es/refbase/show.php?record=4598), last updated on Tue, 24 Nov 2020 09:40:50 +0000 %X The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects. %R 10.1103/PhysRevD.102.092003 %U https://arxiv.org/abs/2006.15052 %U https://doi.org/10.1103/PhysRevD.102.092003 %P 092003-20pp