@Article{DUNECollaborationAbi_etal2021, author="DUNE Collaboration (Abi, B. et al and Antonova, M. and Barenboim, G. and Cervera-Villanueva, A. and De Romeri, V. and Fernandez Menendez, P. and Garcia-Peris, M. A. and Izmaylov, A. and Martin-Albo, J. and Masud, M. and Mena, O. and Novella, P. and Sorel, M. and Ternes, C. A. and Tortola, M. and Valle, J. W. F.", title="Supernova neutrino burst detection with the Deep Underground Neutrino Experiment", journal="European Physical Journal C", year="2021", publisher="Springer", volume="81", number="5", pages="423 - 26pp", abstract="The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE{\textquoteright}s ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered.", optnote="WOS:000661101700001", optnote="exported from refbase (https://references.ific.uv.es/refbase/show.php?record=4859), last updated on Thu, 01 Jul 2021 22:03:52 +0000", issn="1434-6044", doi="10.1140/epjc/s10052-021-09166-w", opturl="https://arxiv.org/abs/2008.06647", opturl="https://doi.org/10.1140/epjc/s10052-021-09166-w", language="English" }