@Article{DoubleChoozcollaborationdeKerret+Novella2020, author="Double Chooz collaboration (de Kerret, H. et al and Novella, P.", title="Double Chooz theta(13) measurement via total neutron capture detection", journal="Nature Physics", year="2020", publisher="Nature Publishing Group", volume="16", pages="558--564", abstract="Neutrinos were assumed to be massless particles until the discovery of the neutrino oscillation process. This phenomenon indicates that the neutrinos have non-zero masses and the mass eigenstates (nu(1), nu(2), nu(3)) are mixtures of their flavour eigenstates (nu(e), nu(mu), nu(tau)). The oscillations between different flavour eigenstates are described by three mixing angles (theta(12), theta(23), theta(13)), two differences of the squared neutrino masses of the nu(2)/nu(1) and nu(3)/nu(1) pairs and a charge conjugation parity symmetry violating phase delta(CP). The Double Chooz experiment, located near the Chooz Electricite de France reactors, measures the oscillation parameter theta(13) using reactor neutrinos. Here, the Double Chooz collaboration reports the measurement of the mixing angle theta(13) with the new total neutron capture detection technique from the full data set, yielding sin(2)(2 theta(13)) = 0.105 +/- 0.014. This measurement exploits the multidetector configuration, the isoflux baseline and data recorded when the reactors were switched off. In addition to the neutrino mixing angle measurement, Double Chooz provides a precise measurement of the reactor neutrino flux, given by the mean cross-section per fission