@Article{ATLASCollaborationAad_etal2020, author="ATLAS Collaboration (Aad, G. et al and Alvarez Piqueras, D. and Aparisi Pozo, J. A. and Bailey, A. J. and Barranco Navarro, L. and Cabrera Urban, S. and Castillo, F. L. and Castillo Gimenez, V. and Cerda Alberich, L. and Costa, M. J. and Escobar, C. and Estrada Pastor, O. and Ferrer, A. and Fiorini, L. and Fullana Torregrosa, E. and Fuster, J. and Garcia, C. and Garcia Navarro, J. E. and Gonzalez de la Hoz, S. and Higon-Rodriguez, E. and Jimenez Pena, J. and Lacasta, C. and Lozano Bahilo, J. J. and Madaffari, D. and Mamuzic, J. and Marti-Garcia, S. and Melini, D. and Mi{\~{n}}ano, M. and Mitsou, V. A. and Rodriguez Bosca, S. and Rodriguez Rodriguez, D. and Ruiz-Martinez, A. and Salt, J. and Santra, A. and Soldevila, U. and Sanchez, J. and Valero, A. and Valls Ferrer, J. A. and Vos, M.", title="Z boson production in Pb plus Pb collisions at root S-NN=5.02 TeV measured by the ATLAS experiment", journal="Physics Letters B", year="2020", publisher="Elsevier", volume="802", pages="135262--23pp", abstract="The production yield of Z bosons is measured in the electron and muon decay channels in Pb+Pb collisions at /S-NN = 5.02 TeV with the ATLAS detector. Data from the 2015 LHC run corresponding to an integrated luminosity of 0.49 nb(-1) are used for the analysis. The Z boson yield, normalised by the total number of minimum-bias events and the mean nuclear thickness function, is measured as a function of dilepton rapidity and event centrality. The measurements in Pb+Pb collisions are compared with similar measurements made in proton-proton collisions at the same centre-of-mass energy. The nuclear modification factor is found to be consistent with unity for all centrality intervals. The results are compared with theoretical predictions obtained at next-to-leading order using nucleon and nuclear parton distribution functions. The normalised Z boson yields in Pb+Pb collisions lie 1-3a above the predictions. The nuclear modification factor measured as a function of rapidity agrees with unity and is consistent with a next-to-leading-order QCD calculation including the isospin effect.", optnote="WOS:000515091400074", optnote="exported from refbase (https://references.ific.uv.es/refbase/show.php?record=4347), last updated on Fri, 10 Apr 2020 11:07:19 +0000", issn="0370-2693", doi="10.1018/j.physletb.2020.135262", opturl="https://arxiv.org/abs/1910.13396", opturl="https://doi.org/10.1018/j.physletb.2020.135262", language="English" }