@Article{ATLASCollaborationAad_etal2020, author="ATLAS Collaboration (Aad, G. et al and Aparisi Pozo, J. A. and Bailey, A. J. and Cabrera Urban, S. and Castillo, F. L. and Castillo Gimenez, V. and Cerda Alberich, L. and Costa, M. J. and Escobar, C. and Estrada Pastor, O. and Ferrer, A. and Fiorini, L. and Fullana Torregrosa, E. and Fuster, J. and Garcia, C. and Garcia Navarro, J. E. and Gonzalez de la Hoz, S. and Gonzalvo Rodriguez, G. R. and Guerrero Rojas, J. G. and Higon-Rodriguez, E. and Lacasta, C. and Lozano Bahilo, J. J. and Madaffari, D. and Mamuzic, J. and Marti-Garcia, S. and Melini, D. and Mi{\~{n}}ano, M. and Mitsou, V. A. and Rodriguez Bosca, S. and Rodriguez Rodriguez, D. and Ruiz-Martinez, A. and Salt, J. and Santra, A. and Soldevila, U. and Sanchez, J. and Valero, A. and Valls Ferrer, J. A. and Vos, M.", title="Searches for electroweak production of supersymmetric particles with compressed mass spectra in root s=13 TeV pp collisions with the ATLAS detector", journal="Physical Review D", year="2020", publisher="Amer Physical Soc", volume="101", number="5", pages="052005--46pp", abstract="This paper presents results of searches for the electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139 fb(-1) of root s = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low-transverse-momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of R-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino, or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.", optnote="WOS:000518956500001", optnote="exported from refbase (https://references.ific.uv.es/refbase/show.php?record=4319), last updated on Wed, 25 Mar 2020 11:14:34 +0000", issn="2470-0010", doi="10.1103/PhysRevD.101.052005", opturl="https://arxiv.org/abs/1911.12606", opturl="https://doi.org/10.1103/PhysRevD.101.052005", language="English" }