@Article{ATLASCollaborationAaboud_etal2018, author="ATLAS Collaboration (Aaboud, M. et al and Alvarez Piqueras, D. and Barranco Navarro, L. and Cabrera Urban, S. and Castillo Gimenez, V. and Cerda Alberich, L. and Costa, M. J. and Escobar, C. and Estrada Pastor, O. and Fernandez Martinez, P. and Ferrer, A. and Fiorini, L. and Fuster, J. and Garcia, C. and Garcia Navarro, J. E. and Gonzalez de la Hoz, S. and Higon-Rodriguez, E. and Jimenez Pena, J. and Lacasta, C. and Madaffari, D. and Mamuzic, J. and Marti-Garcia, S. and Melini, D. and Mitsou, V. A. and Pedraza Lopez, S. and Rodriguez Bosca, S. and Rodriguez Rodriguez, D. and Romero Adam, E. and Salt, J. and Sanchez Martinez, V. and Soldevila, U. and Sanchez, J. and Valero, A. and Valls Ferrer, J. A. and Vos, M.", title="Search for electroweak production of supersymmetric particles in final states with two or three leptons at root s=13 Tev with the ATLAS detector", journal="European Physical Journal C", year="2018", publisher="Springer", volume="78", number="12", pages="995 - 36pp", abstract="A search for the electroweak production of charginos, neutralinos and sleptons decaying into final states involving two or three electrons or muons is presented. The analysis is based on 36.1 fb(-1) of root s = 13 TeV protonproton collisions recorded by the ATLAS detector at the Large Hadron Collider. Several scenarios based on simplified models are considered. These include the associated production of the next-to-lightest neutralino and the lightest chargino, followed by their decays into final states with leptons and the lightest neutralino via either sleptons or Standard Model gauge bosons; direct production of chargino pairs, which in turn decay into leptons and the lightest neutralino via intermediate sleptons; and slepton pair production, where each slepton decays directly into the lightest neutralino and a lepton. No significant deviations from the Standard Model expectation are observed and stringent limits at 95{\%} confidence level are placed on the masses of relevant supersymmetric particles in each of these scenarios. For a massless lightest neutralino, masses up to 580 GeV are excluded for the associated production of the next-to-lightest neutralino and the lightest chargino, assuming gauge-boson mediated decays, whereas for slepton-pair production masses up to 500 GeV are excluded assuming three generations of mass-degenerate sleptons.", optnote="WOS:000452335500003", optnote="exported from refbase (https://references.ific.uv.es/refbase/show.php?record=3832), last updated on Thu, 20 Dec 2018 12:14:44 +0000", issn="1434-6044", doi="10.1140/epjc/s10052-018-6423-7", opturl="http://arxiv.org/abs/1803.02762", opturl="https://doi.org/10.1140/epjc/s10052-018-6423-7", archivePrefix="arXiv", eprint="1803.02762", language="English" }