Fuster-Martinez, N., Assmann, R. W., Bruce, R., Giovannozzi, M., Hermes, P., Mereghetti, A., et al. (2022). Beam-based aperture measurements with movable collimator jaws as performance booster of the CERN Large Hadron Collider. Eur. Phys. J. Plus, 137(3), 305–20pp.
Abstract: The beam aperture of a particle accelerator defines the clearance available for the circulating beams and is a parameter of paramount importance for the accelerator performance. At the CERN Large Hadron Collider (LHC), the knowledge and control of the available aperture is crucial because the nominal proton beams carry an energy of 362 MJ stored in a superconducting environment. Even a tiny fraction of beam losses could quench the superconducting magnets or cause severe material damage. Furthermore, in a circular collider, the performance in terms of peak luminosity depends to a large extent on the aperture of the inner triplet quadrupoles, which are used to focus the beams at the interaction points. In the LHC, this aperture represents the smallest aperture at top-energy with squeezed beams and determines the maximum potential reach of the peak luminosity. Beam-based aperture measurements in these conditions are difficult and challenging. In this paper, we present different methods that have been developed over the years for precise beam-based aperture measurements in the LHC, highlighting applications and results that contributed to boost the operational LHC performance in Run 1 (2010-2013) and Run 2 (2015-2018)
|
Moreira, A. R. P., Belchior, F. M., Maluf, R. V., & Almeida, C. A. S. (2023). Bulk fields localization on thick string-like brane in f(T) gravity. Eur. Phys. J. Plus, 138(8), 730–15pp.
Abstract: This paper aims to investigate the influence of torsion on bulk fields in the codimension two thick brane in f(T) modified teleparallel gravity. It is shown that the brane supports the localization of gauge field zero mode without an extra coupling. However, Kalb-Ramond and fermionic fields require a suitable coupling. Then, it is proposed a geometrical coupling based on results in 5D thick brane in modified teleparallel gravities. The Kalb-Ramond field is coupled to torsion scalar T through a gauge-invariant interaction. For the case of fermionic fields, we study the Dirac fermions and gravitino with a derivative geometrical coupling. For all of the fields, it obtained massive and resonant modes by employing the Schodinger-like approach.
|
Araújo, M. C., Furtado, J., & Maluf, R. V. (2024). Casimir effect in a Lorentz-violating tensor extension of a scalar field theory. Eur. Phys. J. Plus, 139(2), 165–12pp.
Abstract: This paper investigates the Casimir energy modifications due to the Lorentz-violating CPT-even contribution in an extension of the scalar QED. We have considered the complex scalar field satisfying Dirichlet boundary conditions between two parallel plates separated by a small distance. An appropriate tensor parametrization allowed us to study the Casimir effect in three different configurations: isotropic, anisotropic parity-odd, and anisotropic parity-even. We have shown that the Lorentz-violating contributions can promote either an increase or a decrease in the Casimir energy evaluated in the isotropic configuration, depending on whether the violation parameters are taking as positive or negative values. On the other hand, for the anisotropic parity-even case the Casimir energy only decreases, while for the anisotropic parity-odd cases it only increases. Therefore, from these last two results it seems that the Casimir energy is sensitive to the parity of Lorentz-violating coefficients.
|
Pich, A. (2021). Challenges for tau physics at the TeraZ. Eur. Phys. J. Plus, 136(11), 1117–8pp.
Abstract: The very high statistics, low backgrounds and clean back-to-back kinematics of a TeraZ facility would provide an optimal laboratory for precision measurements of the tau properties. A few important topics in tau physics where very relevant contributions could be made are highlighted.
|
Nacher, E., Briz, J. A., Nerio, A. N., Perea, A., Tavora, V. G., Tengblad, O., et al. (2024). Characterization of a novel proton-CT scanner based on Silicon and LaBr3(Ce) detectors. Eur. Phys. J. Plus, 139(5), 404–9pp.
Abstract: Treatment planning systems at proton-therapy centres entirely use X-ray computed tomography (CT) as primary imaging technique to infer the proton treatment doses to tumour and healthy tissues. However, proton stopping powers in the body, as derived from X-ray images, suffer from important proton-range uncertainties. In order to reduce this uncertainty in range, one could use proton-CT images instead. The main goal of this work is to test the capabilities of a newly-developed proton-CT scanner, based on the use of a set of tracking detectors and a high energy resolution scintillator for the residual energy of the protons. Different custom-made phantoms were positioned at the field of view of the scanner and were irradiated with protons at the CCB proton-therapy center in Krakow. We measured with the phantoms at different angles and produced sinograms that were used to obtain reconstructed images by Filtered Back-Projection. The obtained images were used to determine the capabilities of our scanner in terms of spatial resolution and proton Relative Stopping Power (RSP) mapping and validate its use as proton-CT scanner. The results show that the scanner can produce medium-high quality images, with spatial resolution better than 2 mm in radiography, below 3 mm in tomography and resolving power in the RSP comparable to other state-of-the-art pCT scanners.
|
Fanchiotti, H., Garcia Canal, C. A., & Vento, V. (2025). Do heavy monopoles hide from us? Eur. Phys. J. Plus, 140(2), 170–8pp.
Abstract: Dirac demonstrated that the existence of a single magnetic monopole in the universe could explain the discrete nature of electric charge. Magnetic monopoles naturally arise in most grand unified theories. However, the extensive experimental searches conducted thus far have not been successful. Here, we propose a mechanism in which magnetic monopoles bind deeply with neutral states, effectively hiding some of the properties of free monopoles. We explore various scenarios for these systems and analyze their detectability. In particular, one scenario is especially interesting, as it predicts a light state-an analog of an electron but with magnetic charge instead of electric charge-which we refer to as a magnetron.
|
Fanchiotti, H., Garcia Canal, C. A., & Vento, V. (2023). Energy loss of monopolium in a medium. Eur. Phys. J. Plus, 138(9), 850–11pp.
Abstract: We study the energy loss of excited monopolium in an atomic medium. We perform a classical calculation in line with a similar calculation performed for charged particles which leads in the non-relativistic limit to the Bethe-Bloch formula except for the density dependence of the medium, which we do not consider in this paper. Our result shows that for maximally deformed Rydberg states, the ionization of monopolium in a light atomic medium is similar to that of light ions.
|
Mauro, S., Balbinot, R., Fabbri, A., & Shapiro, I. L. (2015). Fourth derivative gravity in the auxiliary fields representation and application to the black-hole stability. Eur. Phys. J. Plus, 130(7), 135–8pp.
Abstract: We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in detail and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results clearer. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.
|
Balbinot, R., Fabbri, A., & Mayoral, C. (2013). Hawking effect in BECs acoustic white holes. Eur. Phys. J. Plus, 128(2), 16–21pp.
Abstract: Bogoliubov pseudoparticle creation in a BEC undergoing a WH-like flow is investigated analytically in the case of a one-dimensional geometry with stepwise homogeneous regions. Comparison of the results with those corresponding to a BH flow is performed. The implications for the analogous gravitational problem is discussed.
|
Balibrea-Correa, J., Lerendegui-Marco, J., Ladarescu, I., Guerrero, C., Rodriguez-Gonzalez, T., Jimenez-Ramos, M. C., et al. (2022). Hybrid in-beam PET- and Compton prompt-gamma imaging aimed at enhanced proton-range verification. Eur. Phys. J. Plus, 137(11), 1258–18pp.
Abstract: We report on a hybrid in-beam PET and prompt-gamma Compton imaging system aimed at quasi real-time ion-range verification in proton-therapy treatments. Proof-of-concept experiments were carried out at the radiobiology beam line of the CNA cyclotron facility using a set of two synchronous Compton imagers and different target materials. The time structure of the 18 MeV proton beam was shaped with a series of beam-on and beam-off intervals, thereby mimicking a pulsed proton beam on a long time scale. During beam-on intervals, Compton imagingwas performed utilizing the high energy. -rays promptly emitted from the nuclear reactions occurring in the targets. In the course of the beam-off intervals in situ positron-emission tomography was accomplished with the same imagers using the beta+ decay of activated nuclei. The targets used were stacks of different materials covering also various proton ranges and energies. A systematic study on the performance of these two complementary imaging techniques is reported and the experimental results interpreted on the basis ofMonte Carlo calculations. The results demonstrate the possibility to combine both imaging techniques in a concomitant way, where high-efficiency prompt-gamma imaging is complemented with the high spatial accuracy of PET. Empowered by these results we suggest that a pulsed beam with a suitable duty cycle, in conjunction with in situ Compton- and PET-imaging may help to attain complementary information and quasi real-time range monitoring with high accuracy.
|