DELPHI Collaboration(Abdallah, J. et al), Costa, M. J., Ferrer, A., Fuster, J., Garcia, C., Oyanguren, A., et al. (2010). Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z (0) decays. Eur. Phys. J. C, 67(3-4), 343–366.
Abstract: An analysis of the direct soft photon production rate as a function of the parent jet characteristics is presented, based on hadronic events collected by the DELPHI experiment at LEP1. The dependences of the photon rates on the jet kinematic characteristics (momentum, mass, etc.) and on the jet charged, neutral and total hadron multiplicities are reported. Up to a scale factor of about four, which characterizes the overall value of the soft photon excess, a similarity of the observed soft photon behavior to that of the inner hadronic bremsstrahlung predictions is found for the momentum, mass, and jet charged multiplicity dependences. However for the dependence of the soft photon rate on the jet neutral and total hadron multiplicities a prominent difference is found for the observed soft photon signal as compared to the expected bremsstrahlung from final state hadrons. The observed linear increase of the soft photon production rate with the jet total hadron multiplicity and its strong dependence on the jet neutral multiplicity suggest that the rate is proportional to the number of quark pairs produced in the fragmentation process, with the neutral pairs being more effectively radiating than the charged ones.
|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fernandez Martinez, P., et al. (2016). Study of the B-c(+) -> J/psi D-s(+) and Bc(+) -> J/psi D-s*(+) decays with the ATLAS detector. Eur. Phys. J. C, 76(1), 4–24pp.
Abstract: The decays B-c(+) -> J/psi D-s(+) and B-c(+) -> J/psi D-s*(+) are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb(-1) of pp collisions collected at centre-of-mass energies root s = 7 TeV and 8 TeV, respectively. Signal candidates are identified through J/psi -> mu(+)mu(-) and D-s(()*()+) -> phi pi(+)(gamma/pi(0)) decays. With a two-dimensional likelihood fit involving the B-c(+) reconstructed invariant mass and an angle between the mu(+) and D-s(+) candidate momenta in the muon pair rest frame, the yields of B-c(+) -> J/psi D-s(+) and B-c(+) -> J/psi D-s*(+), and the transverse polarisation fraction in B-c(+) -> J/psi D-s*(+) decay are measured. The transverse polarisation fraction is determined to be Gamma +/-+/-(B-c(+) -> J/psi D-s*(+))/Gamma(B-c(+) -> J/psi D-s*(+)) = 0.38 +/- 0.23 +/- 0.07, and the derived ratio of the branching fractions of the two modes is B-Bc+ -> J/psi D-s*+/B-Bc+ -> J/psi D-s(+) = 2.8(-0.8)(+1.2) +/- 0.3, where the first error is statistical and the second is systematic. Finally, a sample of B-c(+) -> J/psi pi(+) decays is used to derive the ratios of branching fractions B-Bc+ -> J/psi D-s*+/B-Bc+ -> J/psi pi(+) = 3.8 +/- 1.1 +/- 0.4 +/- 0.2 and B-Bc+ -> J/psi D-s*+/B-Bc+ -> J/psi pi(+) = 10.4 +/- 3.1 +/- 1.5 +/- 0.6, where the third error corresponds to the uncertainty of the branching fraction of D-s(+) -> phi(K+ K-)pi(+) decay. The available theoretical predictions are generally consistent with the measurement.
|
Fuster, J., Garcia, I., Gomis, P., Perello, M., Ros, E., & Vos, M. (2015). Study of single top production at high energy electron positron colliders. Eur. Phys. J. C, 75(5), 223–7pp.
Abstract: The effect of single top production on the study of top quark pair production in future high energy electron-positron colliders is evaluated. The rate of the single top quark production process is sizeable throughout a large range of center-of-mass energies and the final state cannot easily be distinguished from the dominant pair production process. We discuss the impact on the top quark mass extraction from a scan through the pair production threshold and the determination of top quark form factors in the continuum. These results advocate for the exploration of the inclusive e(+) e(-) -> W(+)bW(-)b(-) process, that includes both top quark pair and single top quark production.
|
Du, M. L., Guo, F. K., Meissner, U. G., & Yao, D. L. (2017). Study of open-charm 0(+) states in unitarized chiral effective theory with one-loop potentials. Eur. Phys. J. C, 77(11), 728–16pp.
Abstract: Chiral potentials are derived for the interactions between Goldstone bosons and pseudo-scalar charmed mesons up to next-to-next-to-leading order in a covariant chiral effective field theory with explicit vector charmed-meson degrees of freedom. Using the extended-on-mass-shell scheme, we demonstrate that the ultraviolet divergences and the so-called power counting breaking terms can be properly absorbed by the low-energy constants of the chiral Lagrangians. We calculate the scattering lengths by unitarizing the one-loop potentials and fit them to the data extracted from lattice QCD. The obtained results are compared to the ones without an explicit contribution of vector charmed mesons given previously. It is found that the difference is negligible for 5-wave scattering in the threshold region. This validates the use of D-*-less one-loop potentials in the study of the pertinent scattering lengths. We search for dynamically generated open-charm states with J(P) = 0(+) as poles of the 5-matrix on various Riemann sheets. The trajectories of those poles for varying pion masses are presented as well.
|
CDF Collaboration(Aaltonen, T. et al), Cabrera, S., & Cuenca Almenar, C. (2010). Study of multi-muon events produced in p (p)over-bar interactions at root s=1.96 TeV. Eur. Phys. J. C, 68(1-2), 109–118.
Abstract: We report the results of a study of multi-muon events produced at the Fermilab Tevatron collider and acquired with the CDF II detector using a dedicated dimuon trigger. The production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe of radius 1.5 cm are successfully modeled by known processes which include heavy flavor production. In contrast, we are presently unable to fully account for the number and properties of the remaining events, in which at least one muon candidate is produced outside of the beam pipe, in terms of the same understanding of the CDF II detector, trigger, and event reconstruction.
|
Abdallah, J. et al, Carrio, F., Fiorini, L., Garcia Aparisi, F. B., Rodriguez Bosca, S., Valero, A., et al. (2021). Study of energy response and resolution of the ATLAS Tile Calorimeter to hadrons of energies from 16 to 30 GeV. Eur. Phys. J. C, 81(6), 549–18pp.
Abstract: Three spare modules of the ATLAS Tile Calorimeter were exposed to test beams from the Super Proton Synchrotron accelerator at CERN in 2017. The detector's measurements of the energy response and resolution to positive pions and kaons, and protons with energies ranging from 16 to 30 GeV are reported. The results have uncertainties of a few percent. They were compared to the predictions of the Geant4-based simulation program used in ATLAS to estimate the response of the detector to proton-proton events at the Large Hadron Collider. The determinations obtained using experimental and simulated data agree within the uncertainties.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Study of chi(b) meson production in pp collisions at root s=7 and 8 TeV and observation of the decay chi(b) (3P) -> gamma(3S)gamma. Eur. Phys. J. C, 74(10), 3092–13pp.
Abstract: A study of chi(b) meson production at LHCb is performed on proton-proton collision data, corresponding to 3.0 fb(-1) of integrated luminosity collected at centre-of-mass energies root s = 7 and 8 TeV. The fraction of gamma(nS) mesons originating from chi(b) decays is measured as a function of the gamma transverse momentum in the rapidity range 2.0 < y(gamma) < 4.5. The radiative transition of the chi(b) (3P) meson to gamma(3S) is observed for the first time. The chi(b)1 (3P) mass is determined to be m chi(b1) (3P) = 10 511.3 +/- 1.7 +/- 2.5MeV/c(2), where the first uncertainty is statistical and the second is systematic.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Libralon, S., Martinez-Vidal, F., Oyanguren, A., et al. (2024). Study of charmonium production via the decay to p pbar at √s=13 TeV. Eur. Phys. J. C, 84(12), 1274–19pp.
Abstract: Charmonium production cross-section in protonpvroton collisions is measured at the centre-of-mass energy root s = 13 TeV using decays to pp final state. The study is performed using a data sample corresponding to an integrated luminosity of 2.2 fb(-1) collected in 2018 with the LHCb detector. The production cross-section of the h(c) meson is measured in a rapidity range of 2.0 < y < 4.0 and in a transverse momentum range of 5.0 < p(T) < 20.0GeV/c, which is extended compared with previous LHCb analyses. The differential cross-section is measured in bins of pT and, for the first time, of y. Upper limits, at 90% and 95% confidence levels, on the h(c)(2S) and h(c)(1P) prompt production cross-sections are determined for the first time.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Study of charmonium production in b-hadron decays and first evidence for the decay B-s(0) -> phi phi phi. Eur. Phys. J. C, 77(9), 609–18pp.
Abstract: Using decays to f-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting by B-C = B(b -> CX) x B(C -> phi phi) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of phi mesons, ratios R-C2(C1) = B-C1/B-C2 are determined as R-eta c(1S)(chi c0) = 0.147 +/- 0.023 +/- 0.011, R-eta c(1S)(chi c1) = 0.073 +/- 0.016 +/- 0.006, R-eta c(1S)(chi c2) = 0.081 +/- 0.013 +/- 0.005, R-chi c0(chi c1) = 0.50 +/- 0.11 +/- 0.01, R-chi c0(chi c2) = 0.56 +/- 0.10 +/- 0.01 and R-eta c(1S)(eta c(2S)) = 0.040 +/- 0.011 +/- 0.004. Here and below the first uncertainties are statistical and the second systematic. Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and.c2(2P) states are obtained as R-chi c1(X(3872)) < 0.34, R-chi c0(X(3915)) < 0.12 and R-chi c2(chi c2(2P)) < 0.16. Differential cross-sections as a function of transverse momentum are measured for the eta(c)(1S) and chi(c) states. The branching fraction of the decay B-s(0). phi phi phi is measured for the first time, B(B-s(0) -> phi phi phi) = (2.15 +/- 0.54 +/- 0.28 +/- 0.21 B) x10(-6). Here the third uncertainty is due to the branching fraction of the decay B-s(0) -> phi phi, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse phi polarization is observed. Themeasurements allow the determination of the ratio of the branching fractions for the eta(c)(1S) decays to ff and p (p) over bar as B(eta(c)(1S) -> phi phi)/B(eta(c)(1S) -> p (p) over bar) = 1.79 +/- 0.14 +/- 0.32.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Studies of the resonance structure in D-0 -> K-/+ pi(+/-) pi(+/-) pi(-/+) decays. Eur. Phys. J. C, 78(6), 443–31pp.
Abstract: Amplitude models are constructed to describe the resonance structure of D-0 -> K-pi(+) pi(+) pi(-) and D-0 -> K+ pi(-)pi(-)pi(+) decays using pp collision data collected at centre-of-mass energies of 7 and 8 TeV with the LHCb experiment, corresponding to an integrated luminosity of 3.0 f b(-1). The largest contributions to both decay amplitudes are found to come from axial resonances, with decay modes D-0 -> a(1)(1260)(+) K- and D-0 -> K-1(1270/1400)(+)pi(-) being prominent in D-0 -> K-pi(+) pi(+) pi(-) and D-0 -> K+pi(-)pi(-)pi(+), respectively. Precise measurements of the lineshape parameters and couplings of the a(1)(1260)(+), K-1(1270)(-) and K(1460)(-) resonances are made, and a quasi model-independent study of the K(1460)(-) resonance is performed. The coherence factor of the decays is calculated from the amplitude models to be R-K3 pi = 0.459 +/- 0.010 (stat) +/- 0.012 (syst) +/- 0.020 (model), which is consistent with direct measurements. These models will be useful in future measurements of the unitary-triangle angle gamma and studies of charm mixing and CP violation.
|