|
|
Antel, C. et al, Lopez-Pavon, J., Sandner, S., & Urrea, S. (2023). Feebly-interacting particles: FIPs 2022 Workshop Report. Eur. Phys. J. C, 83(12), 1122–266pp.
Abstract: Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs.
|
|
|
|
Antonelli, M., Cirigliano, V., Isidori, G., Mescia, F., Moulson, M., Neufeld, H., et al. (2010). An evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays. Eur. Phys. J. C, 69(3-4), 399–424.
Abstract: We present a global analysis of leptonic and semileptonic kaon decay data, including all recent results published by the BNL-E865, KLOE, KTeV, ISTRA+ and NA48 experiments. This analysis, in conjunction with precise lattice calculations of the hadronic matrix elements now available, leads to a very precise determination of broken vertical bar V-us broken vertical bar and allows us to perform several stringent tests of the Standard Model.
|
|
|
|
Anzivino, G. et al, Gonzalez-Alonso, M., Passemar, E., & Pich, A. (2024). Workshop summary: Kaons@CERN 2023. Eur. Phys. J. C, 84(4), 377–34pp.
Abstract: Kaon physics is at a turning point – while the rare-kaon experiments NA62 and KOTO are in full swing, the end of their lifetime is approaching and the future experimental landscape needs to be defined. With HIKE, KOTO-II and LHCb-Phase-II on the table and under scrutiny, it is a very good moment in time to take stock and contemplate about the opportunities these experiments and theoretical developments provide for particle physics in the coming decade and beyond. This paper provides a compact summary of talks and discussions from the Kaons@CERN 2023 workshop, held in September 2023 at CERN.
|
|
|
|
Araujo Filho, A. A. (2024). Implications of a Simpson-Visser solution in Verlinde's framework. Eur. Phys. J. C, 84(1), 73–22pp.
Abstract: This study focuses on investigating a regular black hole within the framework of Verlinde's emergent gravity. In particular, we explore the main aspects of the modified Simpson-Visser solution. Our analysis reveals the presence of a unique physical event horizon under certain conditions. Moreover, we study the thermodynamic properties, including the Hawking temperature, the entropy, and the heat capacity. Based on these quantities, our results indicate several phase transitions. Geodesic trajectories for photon-like particles, encompassing photon spheres and the formation of black hole shadows, are also calculated to comprehend the behavior of light in the vicinity of the black hole. Additionally, we also provide the calculation of the time delay and the deflection angle. Corroborating our results, we include an additional application in the context of high-energy astrophysical phenomena: neutrino energy deposition. Finally, we investigate the quasinormal modes using third-order WKB approximation.
|
|
|
|
Ardu, M., Davidson, S., & Lavignac, S. (2024). Constraining new physics models from μ → e observables in bottom-up EFT. Eur. Phys. J. C, 84(5), 458–36pp.
Abstract: Upcoming experiments will improve the sensitivity to μ-> e processes by several orders of magnitude, and could observe lepton flavour-changing contact interactions for the first time. In this paper, we investigate what could be learned about New Physics from the measurements of these μ-> e observables, using a bottom-up effective field theory (EFT) approach and focusing on three popular models with new particles around the TeV scale (the type II seesaw, the inverse seesaw and a scalar leptoquark). We showed in a previous publication that μ-> e observables have the ability to rule out these models because none can fill the whole experimentally accessible parameter space. In this work we give more details on our EFT formalism and present more complete results. We discuss the impact of some observables complementary to μ-> e transitions (such as the neutrino mass scale and ordering, and LFV tau decays) and draw attention to the interesting appearance of Jarlskog-like invariants in our expressions for the low-energy Wilson coefficients.
|
|
|
|
Arganda, E., Marcano, X., Martin Lozano, V., Medina, A. D., Perez, A. D., Szewc, M., et al. (2022). A method for approximating optimal statistical significances with machine-learned likelihoods. Eur. Phys. J. C, 82(11), 993–14pp.
Abstract: Machine-learning techniques have become fundamental in high-energy physics and, for new physics searches, it is crucial to know their performance in terms of experimental sensitivity, understood as the statistical significance of the signal-plus-background hypothesis over the background-only one. We present here a simple method that combines the power of current machine-learning techniques to face high-dimensional data with the likelihood-based inference tests used in traditional analyses, which allows us to estimate the sensitivity for both discovery and exclusion limits through a single parameter of interest, the signal strength. Based on supervised learning techniques, it can perform well also with high-dimensional data, when traditional techniques cannot. We apply the method to a toy model first, so we can explore its potential, and then to a LHC study of new physics particles in dijet final states. Considering as the optimal statistical significance the one we would obtain if the true generative functions were known, we show that our method provides a better approximation than the usual naive counting experimental results.
|
|
|
|
Arguelles, C. A. et al, & Barenboim, G. (2023). Snowmass white paper: beyond the standard model effects on neutrino flavor. Eur. Phys. J. C, 83(1), 15–57pp.
Abstract: Neutrinos are one of the most promising messengers for signals of new physics Beyond the Standard Model (BSM). On the theoretical side, their elusive nature, combined with their unknown mass mechanism, seems to indicate that the neutrino sector is indeed opening a window to new physics. On the experimental side, several long-standing anomalies have been reported in the past decades, providing a strong motivation to thoroughly test the standard three-neutrino oscillation paradigm. In this Snowmass21 white paper, we explore the potential of current and future neutrino experiments to explore BSM effects on neutrino flavor during the next decade.
|
|
|
|
Arina, C. et al, Mitsou, V. A., & Moreno Llacer, M. (2025). t-channel dark matter models – a whitepaper. Eur. Phys. J. C, 85(9), 975–96pp.
Abstract: This report, summarising work achieved in the context of the LHC Dark Matter Working Group, investigates the phenomenology of t-channel dark matter models, spanning minimal setups with a single dark matter candidate and mediator to more complex constructions closer to UV-complete models. For each considered class of models, we examine collider, cosmological and astrophysical implications. In addition, we explore scenarios with either promptly decaying or long-lived particles, as well as featuring diverse dark matter production mechanisms in the early universe. By providing a unified analysis framework, numerical tools and guidelines, this work aims to support future experimental and theoretical efforts in exploring t-channel dark matter models at colliders and in cosmology.
|
|
|
|
Athron, P., Bach, M., Fargnoli, H. G., Gnendiger, C., Greifenhagen, R., Park, J. H., et al. (2016). GM2Calc: precise MSSM prediction for (g – 2) of the muon. Eur. Phys. J. C, 76(2), 62–16pp.
Abstract: We present GM2Calc, a public C++ program for the calculation of MSSM contributions to the anomalous magnetic moment of the muon, (g-2)(mu). The code computes (g -2)(mu) precisely, by taking into account the latest two-loop corrections and by performing the calculation in a physical on-shell renormalization scheme. In particular the program includes a tan beta resummation so that it is valid for arbitrarily high values of tan beta, as well as fermion/sfermion-loop corrections which lead to non-decoupling effects from heavy squarks. GM2Calc can be run with a standard SLHA input file, internally converting the input into on-shell parameters. Alternatively, input parameters may be specified directly in this on-shell scheme. In both cases the input file allows one to switch on/off individual contributions to study their relative impact. This paper also provides typical usage examples not only in conjunction with spectrum generators and plotting programs but also as C++ subroutines linked to other programs.
|
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2020). Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in root s=13 TeV pp collisions using the ATLAS detector. Eur. Phys. J. C, 80(2), 123–33pp.
Abstract: A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb(-1) of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at v s = 13 TeV. Three R-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via eitherW bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming W-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.
|
|