|
Altheimer, A. et al, Fassi, F., Gonzalez de la Hoz, S., Kaci, M., Oliver Garcia, E., Rodrigo, G., et al. (2014). Boosted objects and jet substructure at the LHC. Eur. Phys. J. C, 74(3), 2792–24pp.
Abstract: This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of first-principle QCD calculations to yield a precise description of the substructure of jets and study the accuracy of state-of-the-art Monte Carlo tools. Limitations of the experiments' ability to resolve substructure are evaluated, with a focus on the impact of additional (pile-up) proton proton collisions on jet substructure performance in future LHC operating scenarios. A final section summarizes the lessons learnt from jet substructure analyses in searches for new physics in the production of boosted top quarks.
|
|
|
Alves, J. M. (2024). Controlling the flavour changing neutral couplings of multi-Higgs doublets models through unitary matrices. Eur. Phys. J. C, 84(9), 929–7pp.
Abstract: In this paper, we introduce unitary flavour violation to produce multi-Higgs doublets models where all flavour par ameters are contained within three unitary matrices. After that, we identify two of its subclasses, the left and right models, which have naturally suppressed tree-lev el flavour changing neutral couplings that easily avoid the experimental constraints derived from neutral meson mi xing. Then, we show that left models can accomodate spontaneous CP violation when all quarks have flavour changing neutr al couplings. Finally, we illustrate these concepts by considering a specific implementation with three Higgs doublets.
|
|
|
Alves, J. M., Botella, F. J., Branco, G. C., Cornet-Gomez, F., & Nebot, M. (2021). The framework for a common origin of delta(CKM) and delta S-PMN. Eur. Phys. J. C, 81(8), 727–11pp.
Abstract: We analyse a possible connection between CP violations in the quark and lepton sectors, parametrised by the CKM and PMNS phases. If one assumes that CP breaking arises from complexYukawa couplings, both in the quark and lepton sectors, the above connection is not possible in general, sinceYukawa couplings in the two sectors have independent flavour structures. We show that both the CKM and PMNS phases can instead be generated by a vacuum phase in a class of two Higgs doublet models, and in this case a connection may be established. This scenario requires the presence of scalar FCNC at tree level, both in the quark and lepton sectors. The appearance of these FCNC is an obstacle and a blessing. An obstacle since one has to analyse which models are able to conform to the strict experimental limits on FCNC, both in the quark and lepton sectors. A blessing, because this class of models is falsifiable since FCNC arise at a level which can be probed experimentally in the near future, specially in the processes h up arrow e(+/-) t +/- and t -> hc. The connection between CP violations in CKM and PMNS is explicitely illustrated in models with Minimal Flavour Violation.
|
|
|
Alves, J. M., Botella, F. J., Branco, G. C., Cornet-Gomez, F., & Nebot, M. (2017). Controlled flavour changing neutral couplings in two Higgs Doublet models. Eur. Phys. J. C, 77(9), 585–18pp.
Abstract: We propose a class of two Higgs doublet models where there are flavour changing neutral currents (FCNC) at tree level, but under control due to the introduction of a discrete symmetry in the full Lagrangian. It is shown that in this class of models, one can have simultaneously FCNC in the up and down sectors, in contrast to the situation encountered in the renormalisable and minimal flavour violating 2HDM models put forward by Branco et al. (Phys Lett B 380: 119, 1996). The intensity of FCNC is analysed and it is shown that in this class of models one can respect all the strong constraints from experiment without unnatural fine-tuning. It is pointed out that the additional sources of flavour and CP violation are such that they can enhance significantly the generation of the Bbaryon asymmetry of the Universe, with respect to the standard model.
|
|
|
Alves, J. M., Botella, F. J., Branco, G. C., Cornet-Gomez, F., Nebot, M., & Silva, J. P. (2018). Symmetry constrained two Higgs doublet models. Eur. Phys. J. C, 78(8), 630–17pp.
Abstract: We study two-Higgs-doublet models (2HDM) where Abelian symmetries have been introduced, leading to a drastic reduction in the number of free parameters in the 2HDM. Our analysis is inspired in BGL models, where, as the result of a symmetry of the Lagrangian, there are tree-level scalar mediated Flavour-Changing-Neutral-Currents, with the flavour structure depending only on the CKM matrix. A systematic analysis is done on the various possible schemes, which are classified in different classes, depending on the way the extra symmetries constrain the matrices of couplings defining the flavour structure of the scalar mediated neutral currents. All the resulting flavour textures of the Yukawa couplings are stable under renormalisation since they result from symmetries imposed at the Lagrangian level. We also present a brief phenomenological analysis of the most salient features of each class of symmetry constrained 2HDM.
|
|
|
Alves, J. M., Botella, F. J., Branco, G. C., & Nebot, M. (2020). Extending trinity to the scalar sector through discrete flavoured symmetries. Eur. Phys. J. C, 80(8), 710–14pp.
Abstract: We conjecture the existence of a relation between elementary scalars and fermions, making it plausible the existence of three Higgs doublets. We introduce a Trinity Principle (TP) which, given the fact that there are no massless quarks, requires the existence of a minimum of three Higgs doublets. The TP states that each row of the mass matrix of a quark of a given charge should receive the contribution from one and only one scalar doublet and furthermore a given scalar doublet should contribute to one and only one row of the mass matrix of a quark of a given charge. This principle is analogous to the Natural Flavour Conservation (NFC) of Glashow and Weinberg with the key distinction that NFC required the introduction of a flavour blind symmetry, while the TP requires a flavoured symmetry, to be implemented in a natural way. We provide two examples which satisfy the Trinity Principle based on Z(3) and Z(2) x Z(2)' flavoured symmetries, and show that they are the minimal multi-Higgs extensions of the Standard Model where CP can be imposed as a symmetry of the full Lagrangian and broken by the vacuum, without requiring soft-breaking terms. We show that the vacuum phases are sufficient to generate a complex CKM matrix, in agreement with experiment. The above mentioned flavoured symmetries lead to a strong reduction in the number of parameters in the Yukawa interactions, enabling a control of the Scalar Flavour Changing Neutral Couplings (SFCNC). We analyse some of the other physical implications of the two models, including an estimate of the enhancement of the Baryon Asymmetry of the Universe provided by the new sources of CP violation, and a discussion of the strength of their tree-level SFCNC.
|
|
|
Alves, J. M., Botella, F. J., Miro, C., & Nebot, M. (2023). Spontaneous CP violation and μ-τ symmetry intwo-Higgs-doublet models with flavour conservation. Eur. Phys. J. C, 83(10), 940–12pp.
Abstract: In multi-Higgs-doublet models, requiring simultaneously that (i) CP violation only arises spontaneously, (ii)tree level scalar flavour changing couplings are absent and (iii) the fermion mixing matrix is CP violating, can only be achieved in a very specific manner. A general approach with new clarifying insights on the question is presented. Considering the quark sector, that peculiar possibility is not viable on phenomenological grounds. We show that, considering the lepton sector, it is highly interesting and leads to viable models with mu-tau symmetric PMNS matrices. Phenomenological implications of the models, both for Dirac and Majorana (in a type I seesaw scenario) neutrinos, are analysed.
|
|
|
Amelino-Camelia, G. et al, Bernabeu, J., & Passemar, E. (2010). Physics with the KLOE-2 experiment at the upgraded DA Phi NE. Eur. Phys. J. C, 68(3-4), 619–681.
Abstract: Investigation at a f-factory can shed light on several debated issues in particle physics. We discuss: (i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, (ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled-kaon states, (iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta' mesons, (iv) the contribution to understand the nature of light scalar mesons, and (v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e(+)e(-) physics in the continuum with the measurements of (multi) hadronic cross sections and the study of gamma gamma processes.
|
|
|
Amjad, M. S., Bilokin, S., Boronat, M., Doublet, P., Frisson, T., Garcia Garcia, I., et al. (2015). A precise characterisation of the top quark electro-weak vertices at the ILC. Eur. Phys. J. C, 75(10), 512–11pp.
Abstract: Top quark production in the process e(+)e(-) -> t t at a future linear electron positron collider with polarised beams is a powerful tool to determine indirectly the scale of new physics. The presented study, based on a detailed simulation of the ILD detector concept, assumes a centre-of-mass energy of root s = 500GeV and a luminosity of L = 500 fb(-1) equally shared between the incoming beam polarisations of Pe-, Pe+ = +/- 0.8, -/+ 0.3. Events are selected in which the top pair decays semi-leptonically and the cross sections and the forward-backward asymmetries are determined. Based on these results, the vector, axial vector and tensorial CP conserving couplings are extracted separately for the photon and the Z(0) component. With the expected precision, a large number of models in which the top quark acts as a messenger to new physics can be distinguished with many standard deviations. This will dramatically improve expectations from e.g. the LHC for electro-weak couplings of the top quark.
|
|
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Baret, B., Barrios-Marti, J., Hernandez-Rey, J. J., Sanchez-Losa, A., Tönnis, C., et al. (2017). Stacked search for time shifted high energy neutrinos from gamma ray bursts with the ANTARES neutrino telescope. Eur. Phys. J. C, 77(1), 20–10pp.
Abstract: A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gammaray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.
|
|