Agius, D., Essig, R., Gaggero, D., Scarcella, F., Suczewski, G., & Valli, M. (2024). Feedback in the dark: a critical examination of CMB bounds on primordial black holes. J. Cosmol. Astropart. Phys., 07(7), 003–36pp.
Abstract: If present in the early universe, primordial black holes (PBHs) would have accreted matter and emitted highenergy photons, altering the statistical properties of the Cosmic Microwave Background (CMB). This mechanism has been used to constrain the fraction of dark matter that is in the form of PBHs to be much smaller than unity for PBH masses well above one solar mass. Moreover, the presence of dense dark matter mini halos around the PBHs has been used to set even more stringent constraints, as these would boost the accretion rates. In this work, we critically revisit CMB constraints on PBHs taking into account the role of the local ionization of the gas around them. We discuss how the local increase in temperature around PBHs can prevent the dark matter mini halos from strongly enhancing the accretion process, in some cases significantly weakening previously derived CMB constraints. We explore in detail the key ingredients of the CMB bound and derive a conservative limit on the cosmological abundance of massive PBHs.


Martinelli, M., Scarcella, F., Hogg, N. B., Kavanagh, B. J., Gaggero, D., & Fleury, P. (2022). Dancing in the dark: detecting a population of distant primordial black holes. J. Cosmol. Astropart. Phys., 08(8), 006–47pp.
Abstract: Primordial black holes (PBHs) are compact objects proposed to have formed in the early Universe from the collapse of smallscale overdensities. Their existence may be detected from the observation of gravitational waves (GWs) emitted by PBH mergers, if the signals can be distinguished from those produced by the merging of astrophysical black holes. In this work, we forecast the capability of the Einstein Telescope, a proposed thirdgeneration GW observatory, to identify and measure the abundance of a subdominant population of distant PBHs, using the difference in the redshift evolution of the merger rate of the two populations as our discriminant. We carefully model the merger rates and generate realistic mock catalogues of the luminosity distances and errors that would be obtained from GW signals observed by the Einstein Telescope. We use two independent statistical methods to analyse the mock data, finding that, with our more powerful, likelihoodbased method, PBH abundances as small as fPBH approximate to 7 x 10(6) ( fPBH approximate to 2 x 10(6)) would be distinguishable from f(PBH) = 0 at the level of 3 sigma with a one year (ten year) observing run of the Einstein Telescope. Our mock data generation code, darksirens, is fast, easily extendable and publicly available on GitLab.


Bernal, N., MunozAlbornoz, V., PalomaresRuiz, S., & VillanuevaDomingo, P. (2022). Current and future neutrino limits on the abundance of primordial black holes. J. Cosmol. Astropart. Phys., 10(10), 068–38pp.
Abstract: Primordial black holes (PBHs) formed in the early Universe are sources of neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be detected at Earth and constraints on the abundance of cometmass PBHs could be derived from the null observation of this neutrino flux. Here, we consider nonrotating PBHs and improve constraints using SuperKamiokande neutrino data, as well as we perform forecasts for nextgeneration neutrino (HyperKamiokande, JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For PBHs less massive than " few x 1014 g, PBHs would have already evaporated by now, whereas more massive PBHs would still be present and would constitute a fraction of the dark matter of the Universe. We consider monochromatic and extended (lognormal) mass distributions, and a PBH mass range spanning from 1012 g to ti 1016 g. Finally, we also compare our results with previous ones in the literature.


Figueroa, D. G., Raatikainen, S., Rasanen, S., & Tomberg, E. (2022). Implications of stochastic effects for primordial black hole production in ultraslowroll inflation. J. Cosmol. Astropart. Phys., 05(5), 027–48pp.
Abstract: We study the impact of stochastic noise on the generation of primordial black hole (PBH) seeds in ultraslowroll (USR) inflation with numerical simulations. We consider the nonlinearity of the system by consistently taking into account the noise dependence on the inflaton perturbations, while evolving the perturbations on the coarsegrained background affected by the noise. We capture in this way the nonMarkovian nature of the dynamics, and demonstrate that nonMarkovian effects are subleading. Using the Delta N formalism, we find the probability distribution P(R) of the comoving curvature perturbation R. We consider inflationary potentials that fit the CMB and lead to PBH dark matter with i) asteroid, ii) solar, or iii) Planck mass, as well as iv) PBHs that form the seeds of supermassive black holes. We find that stochastic effects enhance the PBH abundance by a factor of O(10)O(10(8)), depending on the PBH mass. We also show that the usual approximation, where stochastic kicks depend only on the Hubble rate, either underestimates or overestimates the abundance by orders of magnitude, depending on the potential. We evaluate the gauge dependence of the results, discuss the quantumtoclassical transition, and highlight open issues of the application of the stochastic formalism to USR inflation.


De Romeri, V., MartinezMirave, P., & Tortola, M. (2021). Signatures of primordial black hole dark matter at DUNE and THEIA. J. Cosmol. Astropart. Phys., 10(10), 051–21pp.
Abstract: Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10(15)10(17) g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.

