Gariazzo, S., de Salas, P. F., & Pastor, S. (2019). Thermalisation of sterile neutrinos in the early universe in the 3+1 scheme with full mixing matrix. J. Cosmol. Astropart. Phys., 07(7), 014–30pp.
Abstract: In the framework of a 3+1 scheme with an additional inert state, we consider the thermalisation of sterile neutrinos in the early Universe taking into account the full 4 x 4 mixing matrix. The evolution of the neutrino energy distributions is found solving the momentum-dependent kinetic equations with full diagonal collision terms, as in previous analyses of flavour neutrino decoupling in the standard case. The degree of thermalisation of the sterile state is shown in terms of the effective number of neutrinos, N-eff, and its dependence on the three additional mixing angles (theta(14), theta(24), theta(34)) and on the squared mass difference Delta m(41)(2) is discussed. Our results are relevant for fixing the contribution of a fourth light neutrino species to the cosmological energy density, whose value is very well constrained by the final Planck analysis. For the preferred region of active-sterile mixing parameters from short-baseline neutrino experiments, we find that the fourth state is fully thermalised (N-eff similar or equal to 4).
|
Gariazzo, S., Martinez-Mirave, P., Mena, O., Pastor, S., & Tortola, M. (2023). Non-unitary three-neutrino mixing in the early Universe. J. Cosmol. Astropart. Phys., 03(3), 046–18pp.
Abstract: Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.
|
Gerbino, M. et al, Martinez-Mirave, P., Mena, O., Tortola, M., & Valle, J. W.. (2023). Synergy between cosmological and laboratory searches in neutrino physics. Phys. Dark Universe, 42, 101333–36pp.
Abstract: The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories.
|
Gola, S., Mandal, S., & Sinha, N. (2022). ALP-portal majorana dark matter. Int. J. Mod. Phys. A, 37, 2250131–14pp.
Abstract: Axion like particles (ALPs) and right-handed neutrinos (RHNs) are two well-motivated dark matter (DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM (Majorana DM) taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and Standard Model (SM) particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint.
|
Gomez-Cadenas, J. J., Martin-Albo, J., Menendez, J., Mezzetto, M., Monrabal, F., & Sorel, M. (2024). The search for neutrinoless double-beta decay. Riv. Nuovo Cimento, 46, 619–692.
Abstract: Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle-physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.
|
Hernandez, P., Lopez-Pavon, J., Rius, N., & Sandner, S. (2022). Bounds on right-handed neutrino parameters from observable leptogenesis. J. High Energy Phys., 12(12), 012–58pp.
Abstract: We revisit the generation of a matter-antimatter asymmetry in the minimal extension of the Standard Model with two singlet heavy neutral leptons (HNL) that can explain neutrino masses. We derive an accurate analytical approximation to the solution of the complete linearized set of kinetic equations, which exposes the non-trivial parameter dependencies in the form of parameterization-independent CP invariants. The identification of various washout regimes relevant in different regions of parameter space sheds light on the relevance of the mass corrections in the interaction rates and clarifies the correlations of baryogenesis with other observables. In particular, by requiring that the measured baryon asymmetry is reproduced, we derive robust upper or lower bounds on the HNL mixings depending on their masses, and constraints on their flavour structure, as well as on the CP-violating phases of the PMNS mixing matrix, and the amplitude of neutrinoless double-beta decay. We also find certain correlations between low and high scale CP phases. Especially emphasizing the testable part of the parameter space we demonstrate that our findings are in very good agreement with numerical results. The methods developed in this work can help in exploring more complex scenarios.
|
Jeong, Y. S., Palomares-Ruiz, S., Reno, M. H., & Sarcevic, I. (2018). Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background. J. Cosmol. Astropart. Phys., 06(6), 019–43pp.
Abstract: Sterile neutrinos with mass in the eV-scale and large mixings of order theta(0) similar or equal to 0.1 could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson phi. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, M-phi, and its coupling to sterile neutrinos, g(s). Then, we explore how to probe part of the allowed parameter space of this particular model with future observations of the diffuse supernova neutrino background by the Hyper-Kamiokande and DUNE detectors. For M-phi similar to 5 – 10 keV and g(s) similar to 10-(4) – 10(-2), as allowed by cosmological constraints, we find that interactions of diffuse supernova neutrinos with relic sterile neutrinos on their way to the Earth would result in significant dips in the neutrino spectrum which would produce unique features in the event spectra observed in these detectors.
|
Jiang, J. Q., Giare, W., Garzai, S., Dainotti, M. G., Di Valentino, E., Mena, O., et al. (2025). Neutrino cosmology after DESI: tightest mass upper limits, preference for the normal ordering, and tension with terrestrial observations. J. Cosmol. Astropart. Phys., 01(1), 153–43pp.
Abstract: The recent DESI Baryon Acoustic Oscillation measurements have led to tight upper limits on the neutrino mass sum, potentially in tension with oscillation constraints requiring Sigma m(nu) greater than or similar to 0.06 eV. Under the physically motivated assumption of positive Sigma m(nu), we study the extent to which these limits are tightened by adding other available cosmological probes, and robustly quantify the preference for the normal mass ordering over the inverted one, as well as the tension between cosmological and terrestrial data. Combining DESI data with Cosmic Microwave Background measurements and several late-time background probes, the tightest 2 sigma limit we find without including a local H-0 prior is Sigma m(nu) < 0.05 eV. This leads to a strong preference for the normal ordering, with Bayes factor relative to the inverted one of 46.5. Depending on the dataset combination and tension metric adopted, we quantify the tension between cosmological and terrestrial observations as ranging between 2.5 sigma and 5 sigma. These results are strenghtened when allowing for a time-varying dark energy component with equation of state lying in the physically motivated non-phantom regime, w(z) >= -1, highlighting an interesting synergy between the nature of dark energy and laboratory probes of the mass ordering. If these tensions persist and cannot be attributed to systematics, either or both standard neutrino (particle) physics or the underlying cosmological model will have to be questioned.
|
Jimenez, R., Kitching, T., Pena-Garay, C., & Verde, L. (2010). Can we measure the neutrino mass hierarchy in the sky? J. Cosmol. Astropart. Phys., 05(5), 035–14pp.
Abstract: Cosmological probes are steadily reducing the total neutrino mass window, resulting in constraints on the neutrino-mass degeneracy as the most significant outcome. In this work we explore the discovery potential of cosmological probes to constrain the neutrino hierarchy, and point out some subtleties that could yield spurious claims of detection. This has an important implication for next generation of double beta decay experiments, that will be able to achieve a positive signal in the case of degenerate or inverted hierarchy of Majorana neutrinos. We find that cosmological experiments that nearly cover the whole sky could in principle distinguish the neutrino hierarchy by yielding 'substantial' evidence for one scenario over the another, via precise measurements of the shape of the matter power spectrum from large scale structure and weak gravitational lensing.
|
Keivani, A., Murase, K., Petropoulou, M., Fox, D. B., Cenko, S. B., Chaty, S., et al. (2018). A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration. Astrophys. J., 864(1), 84–16pp.
Abstract: Detection of the IceCube-170922A neutrino coincident with the flaring blazar TXS 0506+056, the first and only similar to 3 sigma high-energy neutrino source association to date, offers a potential breakthrough in our understanding of high-energy cosmic particles and blazar physics. We present a comprehensive analysis of TXS. 0506+056 during its flaring state, using newly collected Swift, NuSTAR, and X-shooter data with Fermi observations and numerical models to constrain the blazar's particle acceleration processes and multimessenger (electromagnetic (EM) and high-energy neutrino) emissions. Accounting properly for EM cascades in the emission region, we find a physically consistent picture only within a hybrid leptonic scenario, with gamma-rays produced by external inverse-Compton processes and high-energy neutrinos via a radiatively subdominant hadronic component. We derive robust constraints on the blazar's neutrino and cosmic-ray emissions and demonstrate that, because of cascade effects, the 0.1-100 keV emissions of TXS. 0506+056 serve as a better probe of its hadronic acceleration and highenergy neutrino production processes than its GeV-TeV emissions. If the IceCube neutrino association holds, physical conditions in the TXS. 0506+056 jet must be close to optimal for high-energy neutrino production, and are not favorable for ultrahigh-energy cosmic-ray acceleration. Alternatively, the challenges we identify in generating a significant rate of IceCube neutrino detections from TXS. 0506+056 may disfavor single-zone models, in which.-rays and high-energy neutrinos are produced in a single emission region. In concert with continued operations of the high-energy neutrino observatories, we advocate regular X-ray monitoring of TXS. 0506+056 and other blazars in order to test single-zone blazar emission models, clarify the nature and extent of their hadronic acceleration processes, and carry out the most sensitive possible search for additional multimessenger sources.
|