Neri, N. et al, Jaimes Elles, S. J., Libralon, S., Martinez-Vidal, F., Mazorra de Cos, J., Sanderswood, I., et al. (2024). Advancements in experimental techniques for measuring dipole moments of short-lived particles at the LHC. Nucl. Instrum. Methods Phys. Res. A, 1069, 169875–5pp.
Abstract: ALADDIN is a proposed fixed-target experiment at the LHC for the direct measurement of charm baryon dipole moments. The detector features a spectrometer and a Cherenkov detector, while the experimental technique is based on the phenomena of particle channelling and spin precession in bent crystals. TWOCRYST, a proof-of- principle test at the LHC for the proposed experiment, is planned during the LHC Run 3. Recent channelling efficiency measurements performed at the CERN SPS of bent crystals developed at INFN are presented, marking significant progress towards its realisation. The silicon pixel detector for TWOCRYST is under construction. It will work in the secondary vacuum of a Roman Pot positioned inside the LHC beam pipe. The design, construction and integration of the pixel detector inside the Roman Pot will be discussed, along with the design and perspectives for the proposed ALADDIN experiment.
|
|
Punzi, G., Baldini, W., Bassi, G., Contu, A., Fantechi, R., He, J. B., et al. (2024). Detector-embedded reconstruction of complex primitives using FPGAs. Nucl. Instrum. Methods Phys. Res. A, 1069, 169782–4pp.
Abstract: The slowdown of Moore's law and the growing requirements of future HEP experiments with ever-increasing data rates pose important computational challenges for data reconstruction and trigger systems, encouraging the exploration of new computing methodologies. In this work we discuss a FPGA-based tracking system, relying on a massively parallel pattern recognition approach, inspired by the processing of visual images by the natural brain (“retina architecture”). This method allows a large efficiency of utilisation of the hardware, low power consumption and very low latencies. Based on this approach, a device has been designed within the LHCb Upgrade-II project, with the goal of performing track reconstruction in the forward acceptance region in real-time during the upcoming Run 4 of the LHC. This innovative device will perform track reconstruction before the event-building, in a short enough time to provide pre-reconstructed tracks (“primitives”) transparently to the processor farm, as if they had been generated directly by the detector. This allows significant savings in higher-level computing resources, enabling handling higher luminosities than otherwise possible. The feasibility of the project is backed up by the results of tests performed on a realistic hardware prototype, that has been opportunistically processing actual LHCb data in parallel with the regular DAQ in the LHC Run 3.
|
|
Miyagawa, P. S. et al, Bernabeu, P., Lacasta, C., Solaz, C., & Soldevila, U. (2024). Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production. Nucl. Instrum. Methods Phys. Res. A, 1064, 169457–9pp.
Abstract: The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.
|
|
Latonova, V. et al, Bernabeu, J., Lacasta, C., Solaz, C., & Soldevila, U. (2023). Characterization of the polysilicon resistor in silicon strip sensors for ATLAS inner tracker as a function of temperature, pre- and post-irradiation. Nucl. Instrum. Methods Phys. Res. A, 1050, 168119–5pp.
Abstract: The high luminosity upgrade of the Large Hadron Collider, foreseen for 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). The expected ultimate total integrated luminosity of 4000 fb(-1) means that the strip part of the ITk detector will be exposed to the total particle fluences and ionizing doses reaching the values of 1.6 center dot 10(15) MeVn(eq)/cm(2) and 0.66MGy, respectively, including a safety factor of 1.5. Radiation hard n(+)-in-p micro-strip sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. The active area of each ITk strip sensor is delimited by the n-implant bias ring, which is connected to each individual n(+) implant strip by a polysilicon bias resistor. The total resistance of the polysilicon bias resistor should be within a specified range to keep all the strips at the same potential, prevent the signal discharge through the grounded bias ring and avoid the readout noise increase. While the polysilicon is a ubiquitous semiconductor material, the fluence and temperature dependence of its resistance is not easily predictable, especially for the tracking detector with the operational temperature significantly below the values typical for commercial microelectronics. Dependence of the resistance of polysilicon bias resistor on the temperature, as well as on the total delivered fluence and ionizing dose, was studied on the specially-designed test structures called ATLAS Testchips, both before and after their irradiation by protons, neutrons, and gammas to the maximal expected fluence and ionizing dose. The resistance has an atypical negative temperature dependence. It is different from silicon, which shows that the grain boundary has a significant contribution to the resistance. We discuss the contributions by parameterizing the activation energy of the polysilicon resistance as a function of the temperature for unirradiated and irradiated ATLAS Testchips.
|
|
Martin Lozano, V., Sanda Seoane, R. M., & Zurita, J. (2023). Z'-explorer 2.0: Reconnoitering the dark matter landscape. Comput. Phys. Commun., 288, 108729–14pp.
Abstract: We introduce version 2.0 of Z'-explorer, a software tool that provides a simple, fast, and user-friendly test of models with an extra U (1) gauge boson (Z') against experimental LHC results. The main novelty of the second version is the inclusion of missing energy searches, as the first version only included final states into SM particles. Hence Z'-explorer 2.0 is able to test dark matter models where the Z' acts as an s-channel mediator between the Standard Model and the dark sector, a widespread benchmark employed by the ATLAS and CMS experimental collaborations. To this end, we perform here the first public reinterpretation of the most recent ATLAS mono-jet search with 139 fb-1. In addition, the corresponding searches in the visible final states have also been updated. We illustrate the power of our code by re -obtaining public plots and also showing novel results. In particular, we study the cases where the Z' couples strongly to top quarks (top-philic), where dark matter couples with a mixture of vector and axial-vector couplings, and also perform a scan in the parameter space of a string inspired Stuckelberg model. Z'-explorer 2.0 is publicly available on GitHub. Program summary Program Title: Z'-explorer 2.0 CPC Library link to program files: https://doi .org /10 .17632 /k7tdp8kwgf .2 Developer's repository link: https://github .com /ro -sanda /Z--explorer-2 .0 Licensing provisions: GPLv3 Programming language: C++ and bash Nature of problem: New SM neutral gauge bosons, Z', are ubiquitously present in models of New Physics. In order to confront these models versus a large and ever-growing library of LHC searches, Z'-explorer 1.0 had already included all final states including Standard Model particles. Notably, the previous version of this tool lacked the so-called invisible final states manifested as a momentum imbalance in the transverse plane (“missing energy”). These searches help to probe mediators into a dark sector, where a dark matter candidate resides. Solution method: Z'-explorer encodes the production cross sections for Z' bosons at the LHC as a function of their mass, allowing for a fast evaluation of the exclusion limits. This version of Z'-explorer includes a careful validation of the latest search with one energetic jet (mono-jet) performed by the ATLAS collaboration. Hence one can now test if a given point in parameter space is excluded by both visible and invisible searches. The modular structure of the code has been kept, which allows for potential additions (low-energy constraints, flavor, extrapolation to future colliders).
|
|