Neri, N. et al, Jaimes Elles, S. J., Libralon, S., Martinez-Vidal, F., Mazorra de Cos, J., Sanderswood, I., et al. (2024). Advancements in experimental techniques for measuring dipole moments of short-lived particles at the LHC. Nucl. Instrum. Methods Phys. Res. A, 1069, 169875–5pp.
Abstract: ALADDIN is a proposed fixed-target experiment at the LHC for the direct measurement of charm baryon dipole moments. The detector features a spectrometer and a Cherenkov detector, while the experimental technique is based on the phenomena of particle channelling and spin precession in bent crystals. TWOCRYST, a proof-of- principle test at the LHC for the proposed experiment, is planned during the LHC Run 3. Recent channelling efficiency measurements performed at the CERN SPS of bent crystals developed at INFN are presented, marking significant progress towards its realisation. The silicon pixel detector for TWOCRYST is under construction. It will work in the secondary vacuum of a Roman Pot positioned inside the LHC beam pipe. The design, construction and integration of the pixel detector inside the Roman Pot will be discussed, along with the design and perspectives for the proposed ALADDIN experiment.
|
|
HAWC Collaboration(Abeysekara, A. U. et al), & Salesa Greus, F. (2023). The High-Altitude Water Cherenkov (HAWC) observatory in Mexico: The primary detector. Nucl. Instrum. Methods Phys. Res. A, 1052, 168253–18pp.
Abstract: The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC observatory and its analysis techniques build on experience of the Milagro experiment in using ground-based water Cherenkov detectors for gamma-ray astronomy. HAWC is located on the Sierra Negra volcano in Mexico at an elevation of 4100 meters above sea level. The completed HAWC observatory principal detector (HAWC) consists of 300 closely spaced water Cherenkov detectors, each equipped with four photomultiplier tubes to provide timing and charge information to reconstruct the extensive air shower energy and arrival direction. The HAWC observatory has been optimized to observe transient and steady emission from sources of gamma rays within an energy range from several hundred GeV to several hundred TeV. However, most of the air showers detected are initiated by cosmic rays, allowing studies of cosmic rays also to be performed. This paper describes the characteristics of the HAWC main array and its hardware.
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Garcia Soto, A., Gozzini, S. R., et al. (2023). KM3NeT broadcast optical data transport system. J. Instrum., 18(2), T02001–22pp.
Abstract: The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Colomer, M., Garcia Soto, A., et al. (2022). The KM3NeT multi-PMT optical module. J. Instrum., 17(7), P07038–28pp.
Abstract: The optical module of the KM3NeT neutrino telescope is an innovative multi-faceted large area photodetection module. It contains 31 three-inch photomultiplier tubes in a single 0.44 m diameter pressure-resistant glass sphere. The module is a sensory device also comprising calibration instruments and electronics for power, readout and data acquisition. It is capped with a breakout-box with electronics for connection to an electro-optical cable for power and long-distance communication to the onshore control station. The design of the module was qualified for the first time in the deep sea in 2013. Since then, the technology has been further improved to meet requirements of scalability, cost-effectiveness and high reliability. The module features a sub-nanosecond timing accuracy and a dynamic range allowing the measurement of a single photon up to a cascade of thousands of photons, suited for the measurement of the Cherenkov radiation induced in water by secondary particles from interactions of neutrinos with energies in the range of GeV to PeV. A distributed production model has been implemented for the delivery of more than 6000 modules in the coming few years with an average production rate of more than 100 modules per month. In this paper a review is presented of the design of the multi-PMT KM3NeT optical module with a proven effective background suppression and signal recognition and sensitivity to the incoming direction of photons.
|
|
Super-Kamiokande Collaboration(Abe, K. et al), & Molina Sedgwick, S. (2022). Neutron tagging following atmospheric neutrino events in a water Cherenkov detector. J. Instrum., 17(10), P10029–41pp.
Abstract: We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 μs.
|
|