|
Bernardoni, F., Blossier, B., Bulava, J., Della Morte, M., Fritzsch, P., Garron, N., et al. (2014). The b-quark mass from non-perturbative N-f=2 Heavy Quark Effective Theory at O(1/m(h)). Phys. Lett. B, 730, 171–177.
Abstract: We report our final estimate of the b-quark mass from N-f = 2 lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at O(1/m(h)). Treating systematic and statistical errors in a conservative manner, we obtain (m) over bar ((MS) over bar)(b) (2 GeV) = 4.88(15) GeV after an extrapolation to the physical point.
|
|
|
Bernardoni, F., Blossier, B., Bulava, J., Della Morte, M., Fritzsch, P., Garron, N., et al. (2014). Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks. Phys. Lett. B, 735, 349–356.
Abstract: We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on N-f = 2 gauge field ensembles, covering three lattice spacings a approximate to (0.08-0.05) fm and pion masses down to 190 MeV, a variational method for extracting hadronic matrix elements is used to keep systematic errors under control. In addition we perform a careful autocorrelation analysis in the extrapolation to the continuum and to the physical pion mass limits. Our final results read f(B) = 186(13) MeV, f(Bs) = 224(14) MeV and f(Bs)/f(B) = 1.203(65). A comparison with other results in the literature does not reveal a dependence on the number of dynamical quarks, and effects from truncating HQET appear to be negligible.
|
|
|
Dalla Brida, M., Hollwieser, R., Knechtli, F., Korzec, T., Nada, A., Ramos, A., et al. (2022). Determination of a(s )(mZ) by the non-perturbative decoupling method. Eur. Phys. J. C, 82(12), 1092–38pp.
Abstract: We present the details and first results of a new strategy for the determination of alpha s(mZ) (ALPHA Collaboration et al. in Phys. Lett. B 807:135571, 2020). By simultaneously decoupling 3 fictitious heavy quarks we establish a relation between the A-parameters of three-flavor QCD and pure gauge theory. Very precise recent results in the pure gauge theory (Dalla Brida and Ramos in Eur. Phys. J. C 79(8):720, 2019; Nada and Ramos in Eur Phys J C 81(1):1, 2021) can thus be leveraged to obtain the three flavour A-parameter in units of a common decoupling scale. Connecting this scale to hadronic physics in 3-flavour QCD leads to our result in physical units, A(3)/MS = 336(12) MeV, which translates to alpha s(m(Z)) = 0.11823(84). This is compatible with both the FLAG average (Aoki et al. in FLAG review 2021. arXiv:2111.09849 [hep-lat]) and the previous ALPHA result (ALPHA Collaboration et al., Phys. Rev. Lett. 119(10):102001, 2017), with a comparable, yet still statistics dominated, error. This constitutes a highly non-trivial check, as the decoupling strategy is conceptually very different from the 3-flavour QCD step-scaling method, and so are their systematic errors. These include the uncertainties of the combined decoupling and continuum limits, which we discuss in some detail. We also quantify the correlation between both results, due to some common elements, such as the scale determination in physical units and the definition of the energy scale where we apply decoupling.
|
|