Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2016). Impact of curvature divergences on physical observers in a wormhole space-time with horizons. Class. Quantum Gravity, 33(11), 115007–12pp.
Abstract: The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
|
Bazeia, D., Losano, L., Olmo, G. J., & Rubiera-Garcia, D. (2017). Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity. Class. Quantum Gravity, 34(4), 045006–21pp.
Abstract: We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.
|
Bejarano, C., Olmo, G. J., & Rubiera-Garcia, D. (2017). What is a singular black hole beyond general relativity? Phys. Rev. D, 95(6), 064043–18pp.
Abstract: Exploring the characterization of singular black hole spacetimes, we study the relation between energy density, curvature invariants, and geodesic completeness using a quadratic f(R) gravity theory coupled to an anisotropic fluid. Working in a metric-affine approach, our models and solutions represent minimal extensions of general relativity (GR) in the sense that they rapidly recover the usual Reissner-Nordstrm solution from near the inner horizon outwards. The anisotropic fluid helps modify only the innermost geometry. Depending on the values and signs of two parameters on the gravitational and matter sectors, a breakdown of the correlations between the finiteness/ divergence of the energy density, the behavior of curvature invariants, and the (in) completeness of geodesics is obtained. We find a variety of configurations with and without wormholes, a case with a de Sitter interior, solutions that mimic nonlinear models of electrodynamics coupled to GR, and configurations with up to four horizons. Our results raise questions regarding what infinities, if any, a quantum version of these theories should regularize.
|
Afonso, V. I., Olmo, G. J., & Rubiera-Garcia, D. (2017). Scalar geons in Born-Infeld gravity. J. Cosmol. Astropart. Phys., 08(8), 031–35pp.
Abstract: The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r = 2 M, while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.
|
Sepehri, A., Pincak, R., & Olmo, G. J. (2017). M-theory, graphene-branes and superconducting wormholes. Int. J. Geom. Methods Mod. Phys., 14(11), 1750167–32pp.
Abstract: Exploiting an M-brane system whose structure and symmetries are inspired by those of graphene (what we call a graphene-brane), we propose here a similitude between two layers of graphene joined by a nanotube and wormholes scenarios in the brane world. By using the symmetries and mathematical properties of the M-brane system, we show here how to possibly increase its conductivity, to the point of making it as a superconductor. The questions of whether and under which condition this might point to the corresponding real graphene structures becoming superconducting are briefly outlined.
|
Beltran Jimenez, J., Heisenberg, L., Olmo, G. J., & Rubiera-Garcia, D. (2017). On gravitational waves in Born-Infeld inspired non-singular cosmologies. J. Cosmol. Astropart. Phys., 10(10), 029–23pp.
Abstract: We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.
|
Alfonso, V. I., Bejarano, C., Beltran Jimenez, J., Olmo, G. J., & Orazi, E. (2017). The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields. Class. Quantum Gravity, 34(23), 235003–20pp.
Abstract: We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.
|
Menchon, C. C., Olmo, G. J., & Rubiera-Garcia, D. (2017). Nonsingular black holes, wormholes, and de Sitter cores from anisotropic fluids. Phys. Rev. D, 96(10), 104028–16pp.
Abstract: We study Born-Infeld gravity coupled to an anisotropic fluid in a static, spherically symmetric background. The free function characterizing the fluid is selected on the following grounds: i) recovery of the Reissner-Nordstrom solution of General Relativity at large distances, ii) fulfillment of classical energy conditions, and iii) inclusion of models of nonlinear electrodynamics as particular examples. Four branches of solutions are obtained, depending on the signs of two parameters on the gravity and matter sectors. On each branch, we discuss in detail the modifications on the innermost region of the corresponding solutions, which provides a plethora of configurations, including nonsingular black holes and naked objects, wormholes, and de Sitter cores. The regular character of these configurations is discussed according to the completeness of geodesics and the behavior of curvature scalars.
|
Bejarano, C., Lobo, F. S. N., Olmo, G. J., & Rubiera-Garcia, D. (2017). Palatini wormholes and energy conditions from the prism of general relativity. Eur. Phys. J. C, 77(11), 776–13pp.
Abstract: Wormholes are hypothetical shortcuts in space-time that in general relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard designer procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases and how this is related to the same spacetimes when viewed from the modified gravity side.
|
Afonso, V. I., Olmo, G. J., & Rubiera-Garcia, D. (2018). Mapping Ricci-based theories of gravity Into general relativity. Phys. Rev. D, 97(2), 021503–6pp.
Abstract: We show that the space of solutions of a wide class of Ricci-based metric-affine theories of gravity can be put into correspondence with the space of solutions of general relativity (GR). This allows us to use well-established methods and results from GR to explore new gravitational physics beyond it.
|