Ikeno, N., Kimura, R., Yamagata-Sekihara, J., Nagahiro, H., Jido, D., Itahashi, K., et al. (2011). Precision Spectroscopy of Deeply Bound Pionic Atoms and Partial Restoration of Chiral Symmetry in Medium. Prog. Theor. Phys., 126(3), 483–509.
Abstract: We study theoretically the formation spectra of deeply bound pionic atoms expected to be observed by experiments with high energy resolution at RIBF/RIKEN, and we discuss in detail the possibilities to extract new information on the pion properties at finite density from the observed spectra, which may provide information on partial restoration of chiral symmetry in medium. We find that the non-yrast pionic states such as 2s are expected to be seen in the (d,(3)He) spectra, which will be helpful to reduce uncertainties of the theoretical calculations in the neutron wave functions in nucleus. The observation of the 2s state with the ground is state is also helpful to reduce the experimental uncertainties associated in the calibration of the absolute excitation energy. We find that the nuclear densities probed by atomic pions are quite stable and almost constant for various atomic states and various nuclei. Effects of the pion wave function renormalization to the formation spectra are also evaluated.
|
Ikeno, N., Yamagata-Sekihara, J., Nagahiro, H., Jido, D., & Hirenzaki, S. (2011). Formation of heavy-meson bound states by two-nucleon pick-up reactions. Phys. Rev. C, 84(5), 054609–7pp.
Abstract: We develop a model to evaluate the formation rate of the heavy mesic nuclei in two-nucleon pick-up reactions and apply it to the (6)Li target cases for the formation of heavy meson-alpha bound states, as examples. The existence of the quasideuteron in the target nucleus is assumed in this model. It is found that mesic nuclei formation in recoilless kinematics is possible even for heavier mesons than the nucleon in two-nucleon pick-up reactions. We find the formation rate of the meson-alpha bound states can be around half of the elementary cross sections at the recoilless kinematics with small distortions.
|
Molina, R., Nagahiro, H., Hosaka, A., & Oset, E. (2011). Decay of vector-vector resonances into gamma and a pseudoscalar meson. Phys. Rev. D, 83(9), 094030–12pp.
Abstract: We study the decay of dynamically generated resonances from the interaction of two vectors into a gamma and a pseudoscalar meson. The dynamics requires anomalous terms involving vertices with two vectors and a pseudoscalar, which renders it special. We compare our result with data on K-2*(+) (1430) -> K+ gamma and K-2*(0) (1430) -> K-0 gamma and find a good agreement with the data for the K-2*(+) (1430) case and a width considerably smaller than the upper bound measured for the K-2*(0) (1430) meson. We also investigate the decay into pi(+) gamma of one a(2) state, tentatively associated to the a(2)(1320), obtaining qualitative agreement with data.
|
Nagahiro, H., Hirenzaki, S., Oset, E., & Ramos, A. (2012). eta '-Nucleus optical potential and possible eta ' bound states. Phys. Lett. B, 709(1-2), 87–92.
Abstract: Starting from a recent model of the eta'N interaction, we evaluate the eta'-nucleus optical potential, including the contribution of lowest order in density, t rho/2m(eta'), together with the second-order terms accounting for eta' absorption by two nucleons. We also calculate the formation cross section of the eta' bound states from (pi(+), p) reactions on nuclei. The eta'-nucleus potential suffers from uncertainties tied to the poorly known eta'N interaction, which can be partially constrained by the experimental modulus of the eta'N scattering length and/or the recently measured transparency ratios in eta' nuclear photoproduction. Assuming an attractive interaction and taking the claimed experimental value vertical bar a(eta'N)vertical bar = 0.1 fm, we obtain an eta' optical potential in nuclear matter at saturation density of V eta' = -(8.7 + 1.8i) MeV, not attractive enough to produce eta' bound states in light nuclei. Larger values of the scattering length give rise to deeper optical potentials, with moderate enough imaginary parts. For a value vertical bar a(eta'N)vertical bar = 0.3 fm, which can still be considered to lie within the uncertainties of the experimental constraints, the spectra of light and medium nuclei show clear structures associated to eta'-nuclear bound states and to threshold enhancements in the unbound region.
|
Sakai, S., Hosaka, A., & Nagahiro, H. (2017). Effect of the final state interaction of eta ' N on the eta ' photoproduction off the nucleon. Phys. Rev. C, 95(4), 045206–9pp.
Abstract: We investigate the eta' photoproduction off the nucleon with a particular interest in the effect of the final-state interaction (FSI) of the eta' meson and nucleon (eta' N) based on the three-flavor linear sigma model. We find an enhancement in the cross section of the eta' photoproduction near the eta' N-threshold energy owing to the eta' N FSI. With the eta' meson at forward angles, the energy dependence near the eta' N threshold is well reproduced with the eta' N FSI. The cross section at backward angles can also be a good probe to investigate the strength of the eta' N interaction.
|
Tani, A., Ikeno, N., Jido, D., Nagahiro, H., Fujioka, H., Itahashi, K., et al. (2021). Structure of double pionic atoms. Prog. Theor. Exp. Phys., 2021(3), 033D02–16pp.
Abstract: We study theoretically the structure of double pionic atoms, in which two negatively charged pions (pi(-)) are bound in the atomic orbits. The double pionic atom is considered to be an interesting system from the point of view of the multi-bosonic systems. In addition, it could be possible to deduce valuable information on the isospin I = 2 pi pi interaction and the pionnucleus strong interaction. In this paper, we take into account the pi pi strong and electromagnetic interactions, and evaluate the effects on the binding energies by perturbation theory for the double pionic atoms in heavy nuclei. We investigate several combinations of two pionic states and find that the order of magnitude of the energy shifts due to the pi pi interaction is around 10 keV for the strong interaction and around 100 keV for the electromagnetic interaction for the ground states.
|